-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Digits and marks recognition 2 #78
base: master
Are you sure you want to change the base?
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
- polish LFS, allow datasets only
- Jupiter notebook -> hackmd.io or other notes in web
- paint (see comments)
from PIL import Image, ImageDraw | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from keras.models import model_from_json |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
to ONNX pls
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from keras.models import model_from_json | ||
model = model_from_json(open("models/mnist_mega_model_4_sep_1_7.json").read()) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
pass as argument
Собственно говоря, тут обновленная единая модель, которая выдает 12 классов.
0-9 цифры, 10–пустота, 11 –галочка/крестик.
В отличие от базовой модели она чувствительная. Какая-то ахинея (закрашивание/кружочек/стрелочка) не будут опознаны как крестик. Хорошо опознаются нормальные крестики + нормальные галочки (в т.ч. и повернутые).
По-хорошему, надо оставить и обратную совместимость к старой модели.
Качество отдельно на цифрах ~0.998 на тестовой MNIST выборке.