diff --git a/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp b/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp index fce21e224c4141..f33e086b414a89 100644 --- a/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp +++ b/mlir/lib/Conversion/TosaToArith/TosaToArith.cpp @@ -28,7 +28,7 @@ class ConstOpConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ConstOp op, PatternRewriter &rewriter) const final { - rewriter.replaceOpWithNewOp(op, op.value()); + rewriter.replaceOpWithNewOp(op, op.getValue()); return success(); } }; @@ -66,8 +66,8 @@ class ApplyScaleGenericOpConverter LogicalResult matchAndRewrite(tosa::ApplyScaleOp op, PatternRewriter &rewriter) const final { Location loc = op.getLoc(); - Value value = op.value(); - Value multiplier32 = op.multiplier(); + Value value = op.getValue(); + Value multiplier32 = op.getMultiplier(); Type resultTy = op.getType(); Type valueTy = value.getType(); @@ -78,7 +78,7 @@ class ApplyScaleGenericOpConverter Value one64 = getConstantValue(loc, i64Ty, 1, rewriter); Value thirtyOne32 = getConstantValue(loc, i32Ty, 31, rewriter); - Value shift32 = rewriter.create(loc, i32Ty, op.shift()); + Value shift32 = rewriter.create(loc, i32Ty, op.getShift()); // Compute the multiplication in 64-bits then select the high / low parts. Value value64 = rewriter.create(loc, i64Ty, value); @@ -94,7 +94,7 @@ class ApplyScaleGenericOpConverter multiply64 = rewriter.create(loc, multiply64, round); // Apply double rounding if necessary. - if (op.double_round()) { + if (op.getDoubleRound()) { int64_t roundInt = 1 << 30; Value roundUp = getConstantValue(loc, i64Ty, roundInt, rewriter); Value roundDown = getConstantValue(loc, i64Ty, -roundInt, rewriter); @@ -129,14 +129,14 @@ class ApplyScale32BitOpConverter : public OpRewritePattern { Type i32Ty = matchContainerType(rewriter.getI32Type(), resultTy); Type i64Ty = matchContainerType(rewriter.getI64Type(), resultTy); - Value value = op.value(); + Value value = op.getValue(); if (getElementTypeOrSelf(value.getType()).getIntOrFloatBitWidth() > 32) { return failure(); } - Value value32 = op.value(); - Value multiplier32 = op.multiplier(); - Value shift32 = rewriter.create(loc, i32Ty, op.shift()); + Value value32 = op.getValue(); + Value multiplier32 = op.getMultiplier(); + Value shift32 = rewriter.create(loc, i32Ty, op.getShift()); // Constants used during the scaling operation. Value zero32 = getConstantValue(loc, i32Ty, 0, rewriter); @@ -176,7 +176,7 @@ class ApplyScale32BitOpConverter : public OpRewritePattern { rewriter.create(loc, shiftOver32, shiftHighR, zero32); // Conditionally perform our double round. - if (op.double_round()) { + if (op.getDoubleRound()) { Value negOne32 = getConstantValue(loc, i32Ty, -1, rewriter); Value valuePositive = rewriter.create( loc, arith::CmpIPredicate::sge, value32, zero32); diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp index 6c6478b1af6aa7..05a18d7d68dc45 100644 --- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp +++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp @@ -77,7 +77,7 @@ createLinalgBodyCalculationForElementwiseOp(Operation *op, ValueRange args, // tosa::MulOp if (isa(op) && elementTy.isa()) { - if (dyn_cast(op).shift() != 0) { + if (dyn_cast(op).getShift() != 0) { (void)rewriter.notifyMatchFailure(op, "Cannot have shift value for float"); return nullptr; @@ -137,15 +137,15 @@ createLinalgBodyCalculationForElementwiseOp(Operation *op, ValueRange args, return rewriter.create(loc, resultTypes, args); if (isa(op) && elementTy.isa() && - !cast(op).quantization_info()) { + !cast(op).getQuantizationInfo()) { auto constant = rewriter.create(loc, IntegerAttr::get(elementTy, 0)); return rewriter.create(loc, resultTypes, constant, args[0]); } if (isa(op) && elementTy.isa() && - cast(op).quantization_info()) { - auto quantizationInfo = cast(op).quantization_info(); + cast(op).getQuantizationInfo()) { + auto quantizationInfo = cast(op).getQuantizationInfo(); int32_t inputBitWidth = elementTy.getIntOrFloatBitWidth(); int64_t inZp = quantizationInfo.value().getInputZp(); int64_t outZp = quantizationInfo.value().getOutputZp(); @@ -978,7 +978,7 @@ class ReshapeConverterCollapse : public OpConversionPattern { LogicalResult matchAndRewrite(tosa::ReshapeOp reshape, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const final { - ShapedType operandTy = adaptor.input1().getType().cast(); + ShapedType operandTy = adaptor.getInput1().getType().cast(); ShapedType resultTy = reshape.getType().template cast(); bool isDynamic = !operandTy.hasStaticShape(); @@ -1021,7 +1021,7 @@ class ReshapeConverterExpand : public OpConversionPattern { LogicalResult matchAndRewrite(tosa::ReshapeOp reshape, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const final { - ShapedType operandTy = adaptor.input1().getType().cast(); + ShapedType operandTy = adaptor.getInput1().getType().cast(); ShapedType resultTy = reshape.getType().template cast(); bool isDynamic = !operandTy.hasStaticShape(); @@ -1065,7 +1065,7 @@ class ReshapeConverterCollapseExpand LogicalResult matchAndRewrite(tosa::ReshapeOp reshape, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const final { - ShapedType operandTy = adaptor.input1().getType().cast(); + ShapedType operandTy = adaptor.getInput1().getType().cast(); ShapedType resultTy = reshape.getType().template cast(); bool isDynamic = !operandTy.hasStaticShape(); @@ -1086,7 +1086,7 @@ class ReshapeConverterCollapseExpand reshape.getLoc(), RankedTensorType::get(intermediateShape, reshape.getType().getElementType()), - adaptor.input1()); + adaptor.getInput1()); Value expand = rewriter.create(reshape.getLoc(), resultTy, collapse); rewriter.replaceOp(reshape, expand); @@ -1102,7 +1102,7 @@ class TransposeConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::TransposeOp op, PatternRewriter &rewriter) const final { DenseIntElementsAttr perms; - if (!matchPattern(op.perms(), m_Constant(&perms))) { + if (!matchPattern(op.getPerms(), m_Constant(&perms))) { return failure(); } @@ -1136,7 +1136,7 @@ class TransposeConverter : public OpRewritePattern { rewriter.getMultiDimIdentityMap(resultTy.getRank())}; rewriter.replaceOpWithNewOp( - op, resultTy, op.input1(), ValueRange{initTensor}, affineMaps, + op, resultTy, op.getInput1(), ValueRange{initTensor}, affineMaps, getNParallelLoopsAttrs(resultTy.getRank()), [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) { nestedBuilder.create(loc, *args.begin()); @@ -1152,28 +1152,28 @@ class RescaleConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::RescaleOp op, PatternRewriter &rewriter) const final { auto loc = op.getLoc(); - auto input = op.input(); - auto inputTy = op.input().getType().cast(); - auto outputTy = op.output().getType().cast(); + auto input = op.getInput(); + auto inputTy = op.getInput().getType().cast(); + auto outputTy = op.getOutput().getType().cast(); unsigned rank = inputTy.getRank(); // This is an illegal configuration. terminate and log an error - if (op.double_round() && !op.scale32()) + if (op.getDoubleRound() && !op.getScale32()) return rewriter.notifyMatchFailure( op, "tosa.rescale requires scale32 for double_round to be true"); auto dynamicDimsOr = - checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); + checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()}); if (!dynamicDimsOr.has_value()) return failure(); SmallVector dynamicDims = dynamicDimsOr.value(); // The shift and multiplier values. SmallVector multiplierValues; - getValuesFromIntArrayAttribute(op.multiplier(), multiplierValues); + getValuesFromIntArrayAttribute(op.getMultiplier(), multiplierValues); SmallVector shiftValues; - getValuesFromIntArrayAttribute(op.shift(), shiftValues); + getValuesFromIntArrayAttribute(op.getShift(), shiftValues); // If we shift by more than the bitwidth, this just sets to 0. for (int i = 0, s = multiplierValues.size(); i < s; i++) { @@ -1186,7 +1186,7 @@ class RescaleConverter : public OpRewritePattern { // Double round only occurs if shift is greater than 31, check that this // is ever true. bool doubleRound = - op.double_round() && + op.getDoubleRound() && llvm::any_of(shiftValues, [](int32_t v) { return v > 31; }); SmallVector indexingMaps = { @@ -1346,7 +1346,7 @@ class ResizeConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ResizeOp op, PatternRewriter &rewriter) const final { Location loc = op.getLoc(); - auto input = op.input(); + auto input = op.getInput(); auto inputTy = input.getType().cast(); auto resultTy = op.getType().cast(); auto resultElementTy = resultTy.getElementType(); @@ -1355,12 +1355,12 @@ class ResizeConverter : public OpRewritePattern { auto imageW = inputTy.getShape()[2]; auto dynamicDimsOr = - checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); + checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()}); if (!dynamicDimsOr.has_value()) return failure(); SmallVector dynamicDims = dynamicDimsOr.value(); - if (op.mode() != "NEAREST_NEIGHBOR" && op.mode() != "BILINEAR") + if (op.getMode() != "NEAREST_NEIGHBOR" && op.getMode() != "BILINEAR") return failure(); auto initTensor = rewriter.create( @@ -1394,19 +1394,19 @@ class ResizeConverter : public OpRewritePattern { Value inX = rewriter.create(loc, rewriter.getI32Type(), x); - int32_t shift = op.shift(); + int32_t shift = op.getShift(); bool floatingPointMode = shift == 0; Value yStride, xStride, yOffset, xOffset; if (floatingPointMode) { - yStride = rewriter.create(loc, op.stride_fp()[0]); - xStride = rewriter.create(loc, op.stride_fp()[1]); - yOffset = rewriter.create(loc, op.offset_fp()[0]); - xOffset = rewriter.create(loc, op.offset_fp()[1]); + yStride = rewriter.create(loc, op.getStrideFp()[0]); + xStride = rewriter.create(loc, op.getStrideFp()[1]); + yOffset = rewriter.create(loc, op.getOffsetFp()[0]); + xOffset = rewriter.create(loc, op.getOffsetFp()[1]); } else { SmallVector stride, offset; - getValuesFromIntArrayAttribute(op.stride(), stride); - getValuesFromIntArrayAttribute(op.offset(), offset); + getValuesFromIntArrayAttribute(op.getStride(), stride); + getValuesFromIntArrayAttribute(op.getOffset(), offset); yStride = rewriter.create( loc, rewriter.getI32IntegerAttr(stride[0])); @@ -1463,7 +1463,7 @@ class ResizeConverter : public OpRewritePattern { dx = rewriter.create(loc, x, xTrunc); } - if (op.mode() == "NEAREST_NEIGHBOR") { + if (op.getMode() == "NEAREST_NEIGHBOR") { Value yPred, xPred; // Round the index position towards the closest pixel location. if (floatingPointMode) { @@ -1516,7 +1516,7 @@ class ResizeConverter : public OpRewritePattern { return success(); } - if (op.mode() == "BILINEAR") { + if (op.getMode() == "BILINEAR") { Value y0 = iy; Value x0 = ix; @@ -1634,7 +1634,7 @@ class ReduceConverter : public OpRewritePattern { LogicalResult matchAndRewrite(SrcOp reduceOp, PatternRewriter &rewriter) const final { - return reduceMatchAndRewriteHelper(reduceOp, reduceOp.axis(), rewriter); + return reduceMatchAndRewriteHelper(reduceOp, reduceOp.getAxis(), rewriter); } }; @@ -1648,7 +1648,7 @@ struct ConcatConverter : public OpConversionPattern { auto resultType = op.getType().dyn_cast(); Location loc = op.getLoc(); - int axis = op.axis(); + int axis = op.getAxis(); Value axisValue = rewriter.createOrFold( loc, rewriter.getIndexAttr(axis)); int rank = resultType.getRank(); @@ -1713,10 +1713,10 @@ class ReverseConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ReverseOp op, PatternRewriter &rewriter) const final { auto loc = op.getLoc(); - Value input = op.input(); + Value input = op.getInput(); auto inputTy = input.getType().template cast(); auto resultTy = op.getType().template cast(); - auto axis = op.axis(); + auto axis = op.getAxis(); SmallVector dynDims; for (int i = 0; i < inputTy.getRank(); i++) { @@ -1775,7 +1775,7 @@ struct TileConverter : public OpConversionPattern { matchAndRewrite(tosa::TileOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { auto loc = op.getLoc(); - auto input = op.input1(); + auto input = op.getInput1(); auto inputTy = input.getType().cast(); auto inputShape = inputTy.getShape(); auto resultTy = op.getType().cast(); @@ -1783,7 +1783,7 @@ struct TileConverter : public OpConversionPattern { int64_t rank = inputTy.getRank(); SmallVector multiples; - getValuesFromIntArrayAttribute(op.multiples(), multiples); + getValuesFromIntArrayAttribute(op.getMultiples(), multiples); // Broadcast the newly added dimensions to their appropriate multiple. SmallVector genericShape; @@ -1837,8 +1837,8 @@ class PadConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::PadOp padOp, PatternRewriter &rewriter) const final { auto loc = padOp.getLoc(); - auto input = padOp.input1(); - auto padding = padOp.padding(); + auto input = padOp.getInput1(); + auto padding = padOp.getPadding(); ShapedType inputTy = input.getType().cast(); Type elementTy = inputTy.getElementType(); @@ -1848,17 +1848,17 @@ class PadConverter : public OpRewritePattern { Value padConstant; - if (padOp.pad_const()) { + if (padOp.getPadConst()) { padConstant = rewriter.createOrFold( - loc, padOp.pad_const(), ValueRange({})); + loc, padOp.getPadConst(), ValueRange({})); } else { Attribute constantAttr; if (elementTy.isa()) { constantAttr = rewriter.getFloatAttr(elementTy, 0.0); - } else if (elementTy.isa() && !padOp.quantization_info()) { + } else if (elementTy.isa() && !padOp.getQuantizationInfo()) { constantAttr = rewriter.getIntegerAttr(elementTy, 0); - } else if (elementTy.isa() && padOp.quantization_info()) { - int64_t value = padOp.quantization_info()->getInputZp(); + } else if (elementTy.isa() && padOp.getQuantizationInfo()) { + int64_t value = padOp.getQuantizationInfo()->getInputZp(); constantAttr = rewriter.getIntegerAttr(elementTy, value); } if (constantAttr) @@ -1926,12 +1926,12 @@ class ArgMaxConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ArgMaxOp argmaxOp, PatternRewriter &rewriter) const final { auto loc = argmaxOp.getLoc(); - Value input = argmaxOp.input(); + Value input = argmaxOp.getInput(); auto inputTy = input.getType().cast(); - auto resultTy = argmaxOp.output().getType().cast(); + auto resultTy = argmaxOp.getOutput().getType().cast(); auto inElementTy = inputTy.getElementType(); auto outElementTy = resultTy.getElementType(); - int axis = argmaxOp.axis(); + int axis = argmaxOp.getAxis(); auto resultMaxTy = RankedTensorType::get(resultTy.getShape(), inElementTy); if (!outElementTy.isa()) @@ -2049,8 +2049,8 @@ class GatherConverter : public OpConversionPattern { auto resultTy = op.getType().cast(); - auto dynamicDimsOr = - checkHasDynamicBatchDims(rewriter, op, {input, indices, op.output()}); + auto dynamicDimsOr = checkHasDynamicBatchDims( + rewriter, op, {input, indices, op.getOutput()}); if (!dynamicDimsOr.has_value()) return failure(); SmallVector dynamicDims = dynamicDimsOr.value(); @@ -2101,8 +2101,8 @@ class TableConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::TableOp op, PatternRewriter &rewriter) const final { auto loc = op.getLoc(); - Value input = op.input(); - Value table = op.table(); + Value input = op.getInput(); + Value table = op.getTable(); auto inputTy = input.getType().cast(); auto tableTy = table.getType().cast(); auto resultTy = op.getType().cast(); diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp index 19df969c9c9a47..5e491f2ef437c3 100644 --- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp +++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalgNamed.cpp @@ -533,21 +533,21 @@ class MatMulConverter : public OpConversionPattern { .create(loc, ValueRange{zero}, ValueRange{initTensor}) .result(); - if (!op.quantization_info()) { + if (!op.getQuantizationInfo()) { rewriter.replaceOpWithNewOp( - op, TypeRange{op.getType()}, ValueRange{adaptor.a(), adaptor.b()}, - ValueRange{zeroTensor}); + op, TypeRange{op.getType()}, + ValueRange{adaptor.getA(), adaptor.getB()}, ValueRange{zeroTensor}); return success(); } - auto quantizationInfo = *op.quantization_info(); + auto quantizationInfo = *op.getQuantizationInfo(); auto aZp = rewriter.create( loc, rewriter.getI32IntegerAttr(quantizationInfo.getAZp())); auto bZp = rewriter.create( loc, rewriter.getI32IntegerAttr(quantizationInfo.getBZp())); rewriter.replaceOpWithNewOp( op, TypeRange{op.getType()}, - ValueRange{adaptor.a(), adaptor.b(), aZp, bZp}, zeroTensor); + ValueRange{adaptor.getA(), adaptor.getB(), aZp, bZp}, zeroTensor); return success(); } @@ -562,12 +562,12 @@ class FullyConnectedConverter ConversionPatternRewriter &rewriter) const final { Location loc = op.getLoc(); auto outputTy = op.getType().cast(); - auto input = op.input(); + auto input = op.getInput(); auto inputTy = input.getType().cast(); - auto bias = op.bias(); + auto bias = op.getBias(); - auto weight = op.weight(); + auto weight = op.getWeight(); auto weightTy = weight.getType().cast(); auto weightShape = weightTy.getShape(); @@ -627,7 +627,7 @@ class FullyConnectedConverter outputTy.getShape(), outputETy) ->getResults(); - if (!op.quantization_info()) { + if (!op.getQuantizationInfo()) { Value matmul = rewriter .create( loc, TypeRange{op.getType()}, @@ -650,7 +650,7 @@ class FullyConnectedConverter return success(); } - auto quantizationInfo = *op.quantization_info(); + auto quantizationInfo = *op.getQuantizationInfo(); auto inputZp = rewriter.create( loc, rewriter.getI32IntegerAttr(quantizationInfo.getInputZp())); auto outputZp = rewriter.create( @@ -686,14 +686,14 @@ class MaxPool2dConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::MaxPool2dOp op, PatternRewriter &rewriter) const final { Location loc = op.getLoc(); - Value input = op.input(); + Value input = op.getInput(); ShapedType inputTy = input.getType().cast(); ShapedType resultTy = op.getType().template cast(); Type resultETy = inputTy.getElementType(); auto dynamicDimsOr = - checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); + checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()}); if (!dynamicDimsOr.has_value()) return failure(); SmallVector dynamicDims = dynamicDimsOr.value(); @@ -718,15 +718,15 @@ class MaxPool2dConverter : public OpRewritePattern { // Apply padding as necessary. llvm::SmallVector pad; pad.resize(2, 0); - getValuesFromIntArrayAttribute(op.pad(), pad); + getValuesFromIntArrayAttribute(op.getPad(), pad); pad.resize(pad.size() + 2, 0); Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter); Value initialValue = rewriter.create(loc, initialAttr); SmallVector kernel, stride; - getValuesFromIntArrayAttribute(op.kernel(), kernel); - getValuesFromIntArrayAttribute(op.stride(), stride); + getValuesFromIntArrayAttribute(op.getKernel(), kernel); + getValuesFromIntArrayAttribute(op.getStride(), stride); Attribute strideAttr = rewriter.getI64VectorAttr(stride); Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1}); @@ -758,7 +758,7 @@ class AvgPool2dConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::AvgPool2dOp op, PatternRewriter &rewriter) const final { Location loc = op.getLoc(); - Value input = op.input(); + Value input = op.getInput(); ShapedType inputTy = input.getType().cast(); Type inElementTy = inputTy.getElementType(); @@ -770,7 +770,7 @@ class AvgPool2dConverter : public OpRewritePattern { ShapedType accTy = resultTy.clone(accETy); auto dynamicDimsOr = - checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); + checkHasDynamicBatchDims(rewriter, op, {input, op.getOutput()}); if (!dynamicDimsOr.has_value()) return failure(); SmallVector dynamicDims = dynamicDimsOr.value(); @@ -778,7 +778,7 @@ class AvgPool2dConverter : public OpRewritePattern { // Apply padding as necessary. llvm::SmallVector pad; pad.resize(2, 0); - getValuesFromIntArrayAttribute(op.pad(), pad); + getValuesFromIntArrayAttribute(op.getPad(), pad); pad.resize(pad.size() + 2, 0); Attribute padAttr = rewriter.getZeroAttr(inElementTy); Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter); @@ -787,8 +787,8 @@ class AvgPool2dConverter : public OpRewritePattern { Value initialValue = rewriter.create(loc, initialAttr); SmallVector kernel, stride; - getValuesFromIntArrayAttribute(op.kernel(), kernel); - getValuesFromIntArrayAttribute(op.stride(), stride); + getValuesFromIntArrayAttribute(op.getKernel(), kernel); + getValuesFromIntArrayAttribute(op.getStride(), stride); Attribute strideAttr = rewriter.getI64VectorAttr(stride); Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1}); @@ -889,8 +889,8 @@ class AvgPool2dConverter : public OpRewritePattern { // If we have quantization information we need to apply an offset // for the input zp value. - if (op.quantization_info()) { - auto quantizationInfo = *op.quantization_info(); + if (op.getQuantizationInfo()) { + auto quantizationInfo = *op.getQuantizationInfo(); auto inputZp = rewriter.create( loc, b.getIntegerAttr(accETy, quantizationInfo.getInputZp())); Value offset = @@ -925,8 +925,8 @@ class AvgPool2dConverter : public OpRewritePattern { // If we have quantization information we need to apply output // zeropoint. - if (op.quantization_info()) { - auto quantizationInfo = *op.quantization_info(); + if (op.getQuantizationInfo()) { + auto quantizationInfo = *op.getQuantizationInfo(); auto outputZp = rewriter.create( loc, b.getIntegerAttr(scaled.getType(), quantizationInfo.getOutputZp())); diff --git a/mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp b/mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp index 6a5f046559e3b7..46e751e8f0ff13 100644 --- a/mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp +++ b/mlir/lib/Conversion/TosaToSCF/TosaToSCF.cpp @@ -32,7 +32,7 @@ static void inlineIfCase(Region &srcRegion, Region &dstRegion, auto yield = cast(headBlock->getTerminator()); rewriter.setInsertionPoint(yield); - rewriter.create(yield.getLoc(), yield.inputs()); + rewriter.create(yield.getLoc(), yield.getInputs()); rewriter.eraseOp(yield); headBlock->eraseArguments( @@ -55,7 +55,7 @@ static void inlineWhileCase(Region &srcRegion, Region &dstRegion, headBlock->getArguments()); } else { rewriter.setInsertionPoint(yield); - rewriter.create(yield.getLoc(), yield.inputs()); + rewriter.create(yield.getLoc(), yield.getInputs()); } rewriter.eraseOp(yield); } @@ -68,13 +68,14 @@ class IfOpConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::IfOp op, PatternRewriter &rewriter) const final { - auto condition = rewriter.create(op.getLoc(), op.cond()); + auto condition = + rewriter.create(op.getLoc(), op.getCond()); auto newIf = rewriter.create(op.getLoc(), op.getResultTypes(), condition, true); - inlineIfCase(op.then_branch(), newIf.getThenRegion(), op.inputs(), + inlineIfCase(op.getThenBranch(), newIf.getThenRegion(), op.getInputs(), rewriter); - inlineIfCase(op.else_branch(), newIf.getElseRegion(), op.inputs(), + inlineIfCase(op.getElseBranch(), newIf.getElseRegion(), op.getInputs(), rewriter); rewriter.replaceOp(op, newIf.getResults()); @@ -89,12 +90,12 @@ class WhileOpConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::WhileOp op, PatternRewriter &rewriter) const final { auto newWhile = rewriter.create( - op.getLoc(), op.getResultTypes(), op.inputs()); + op.getLoc(), op.getResultTypes(), op.getInputs()); rewriter.createBlock(&newWhile.getBefore()); rewriter.createBlock(&newWhile.getAfter()); - inlineWhileCase(op.cond(), newWhile.getBefore(), rewriter, true); - inlineWhileCase(op.body(), newWhile.getAfter(), rewriter, false); + inlineWhileCase(op.getCond(), newWhile.getBefore(), rewriter, true); + inlineWhileCase(op.getBody(), newWhile.getAfter(), rewriter, false); rewriter.replaceOp(op, newWhile.getResults()); diff --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp index ebc0e611f43828..438e6fe4b7e2ca 100644 --- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp +++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp @@ -29,10 +29,10 @@ class SliceOpConverter : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::SliceOp sliceOp, PatternRewriter &rewriter) const final { Location loc = sliceOp.getLoc(); - Value input = sliceOp.input(); + Value input = sliceOp.getInput(); SmallVector strides; - auto starts = sliceOp.start(); - auto sizes = sliceOp.size(); + auto starts = sliceOp.getStart(); + auto sizes = sliceOp.getSize(); strides.resize(sliceOp.getType().template cast().getRank(), 1); SmallVector dynSizes; diff --git a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp index 7bb6339c69b7fb..7b9e9f15800816 100644 --- a/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp +++ b/mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp @@ -38,17 +38,17 @@ struct ConcatOptimization : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ConcatOp op, PatternRewriter &rewriter) const override { - if (op.input1().size() != 1) + if (op.getInput1().size() != 1) return failure(); - if (op.input1().front().getType() != op.getType()) { + if (op.getInput1().front().getType() != op.getType()) { rewriter .replaceOpWithNewOp(op, op.getType(), - op.input1().front()) + op.getInput1().front()) .getResult(); return success(); } - rewriter.replaceOp(op, op.input1().front()); + rewriter.replaceOp(op, op.getInput1().front()); return success(); } }; @@ -63,14 +63,14 @@ struct ReshapeReshapeOptimization : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ReshapeOp op, PatternRewriter &rewriter) const override { - Value input = op.input1(); + Value input = op.getInput1(); Operation *definingOp = input.getDefiningOp(); if (!definingOp) return failure(); if (tosa::ReshapeOp reshapeOp = dyn_cast(definingOp)) { rewriter.replaceOpWithNewOp( - op, op.getType(), reshapeOp.input1(), op.new_shape()); + op, op.getType(), reshapeOp.getInput1(), op.getNewShape()); return success(); } @@ -83,8 +83,8 @@ struct ReshapeConstOptimization : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ReshapeOp op, PatternRewriter &rewriter) const override { - Value input = op.input1(); - ArrayAttr newShape = op.new_shape(); + Value input = op.getInput1(); + ArrayAttr newShape = op.getNewShape(); // Check if input is constant DenseElementsAttr inputAttr; @@ -118,12 +118,12 @@ void ReshapeOp::getCanonicalizationPatterns(RewritePatternSet &results, } LogicalResult SelectOp::canonicalize(SelectOp op, PatternRewriter &rewriter) { - auto notOp = op.pred().getDefiningOp(); + auto notOp = op.getPred().getDefiningOp(); if (!notOp) return failure(); rewriter.updateRootInPlace(op, [&]() { op.getOperation()->setOperands( - {notOp.input1(), op.on_false(), op.on_true()}); + {notOp.getInput1(), op.getOnFalse(), op.getOnTrue()}); }); return success(); } @@ -133,7 +133,7 @@ struct NoOpOptimization : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::TransposeOp op, PatternRewriter &rewriter) const override { - auto perm = op.perms(); + auto perm = op.getPerms(); DenseIntElementsAttr permAttr; if (!matchPattern(perm, m_Constant(&permAttr))) { @@ -150,7 +150,7 @@ struct NoOpOptimization : public OpRewritePattern { } } - rewriter.replaceOp(op, op.input1()); + rewriter.replaceOp(op, op.getInput1()); return success(); } }; @@ -165,15 +165,15 @@ struct AddZeroOptimization : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::AddOp op, PatternRewriter &rewriter) const override { - auto input1 = op.input1(); - auto input2 = op.input2(); + auto input1 = op.getInput1(); + auto input2 = op.getInput2(); DenseElementsAttr input1Attr; if (matchPattern(input1, m_Constant(&input1Attr)) && input1Attr.isSplat() && input2.getType() == op.getType()) { if (input1Attr.getType().getElementType().isa() && input1Attr.getSplatValue().isZero()) { - rewriter.replaceOp(op, op.input2()); + rewriter.replaceOp(op, op.getInput2()); return success(); } } @@ -183,7 +183,7 @@ struct AddZeroOptimization : public OpRewritePattern { input1.getType() == op.getType()) { if (input2Attr.getType().getElementType().isa() && input2Attr.getSplatValue().isZero()) { - rewriter.replaceOp(op, op.input1()); + rewriter.replaceOp(op, op.getInput1()); return success(); } } @@ -202,21 +202,21 @@ struct MulOneOptimization : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::MulOp op, PatternRewriter &rewriter) const override { - auto input1 = op.input1(); - auto input2 = op.input2(); + auto input1 = op.getInput1(); + auto input2 = op.getInput2(); DenseElementsAttr input1Attr; if (matchPattern(input1, m_Constant(&input1Attr)) && input1Attr.isSplat() && input2.getType() == op.getType()) { if (input1Attr.getType().getElementType().isa() && input1Attr.getSplatValue().isExactlyValue(1)) { - rewriter.replaceOp(op, op.input2()); + rewriter.replaceOp(op, op.getInput2()); return success(); } if (input1Attr.getType().getElementType().isa() && matchPattern(input1, m_One())) { - rewriter.replaceOp(op, op.input2()); + rewriter.replaceOp(op, op.getInput2()); return success(); } } @@ -226,13 +226,13 @@ struct MulOneOptimization : public OpRewritePattern { input1.getType() == op.getType()) { if (input2Attr.getType().getElementType().isa() && input2Attr.getSplatValue().isExactlyValue(1)) { - rewriter.replaceOp(op, op.input1()); + rewriter.replaceOp(op, op.getInput1()); return success(); } if (input2Attr.getType().getElementType().isa() && matchPattern(input2, m_One())) { - rewriter.replaceOp(op, op.input1()); + rewriter.replaceOp(op, op.getInput1()); return success(); } } @@ -251,11 +251,11 @@ struct MaterializePadValue : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::PadOp op, PatternRewriter &rewriter) const override { - if (op.pad_const()) + if (op.getPadConst()) return failure(); - auto input = op.input1(); - auto padding = op.padding(); + auto input = op.getInput1(); + auto padding = op.getPadding(); ShapedType inputTy = input.getType().cast(); Type elementTy = inputTy.getElementType(); @@ -263,10 +263,10 @@ struct MaterializePadValue : public OpRewritePattern { Attribute constantAttr; if (elementTy.isa()) { constantAttr = rewriter.getFloatAttr(elementTy, 0.0); - } else if (elementTy.isa() && !op.quantization_info()) { + } else if (elementTy.isa() && !op.getQuantizationInfo()) { constantAttr = rewriter.getIntegerAttr(elementTy, 0); - } else if (elementTy.isa() && op.quantization_info()) { - auto value = op.quantization_info()->getInputZp(); + } else if (elementTy.isa() && op.getQuantizationInfo()) { + auto value = op.getQuantizationInfo()->getInputZp(); constantAttr = rewriter.getIntegerAttr(elementTy, value); } @@ -298,8 +298,8 @@ struct MaxPool2dIsNoOp : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::MaxPool2dOp op, PatternRewriter &rewriter) const override { - Value input = op.input(); - Value output = op.output(); + Value input = op.getInput(); + Value output = op.getOutput(); ShapedType inputType = input.getType().cast(); ShapedType outputType = output.getType().cast(); @@ -333,8 +333,9 @@ struct ClampIsNoOp : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ClampOp op, PatternRewriter &rewriter) const override { - Value input = op.input(); - auto inputType = op.input().getType().template dyn_cast(); + Value input = op.getInput(); + auto inputType = + op.getInput().getType().template dyn_cast(); auto inputElementType = inputType.getElementType(); if (!inputType.hasStaticShape()) { @@ -342,8 +343,8 @@ struct ClampIsNoOp : public OpRewritePattern { } if (inputElementType.isF32()) { - auto minClamp = op.min_fp(); - auto maxClamp = op.max_fp(); + auto minClamp = op.getMinFp(); + auto maxClamp = op.getMaxFp(); bool isMin = (minClamp.isLargest() || minClamp.isInfinity()) && minClamp.isNegative(); bool isMax = (maxClamp.isLargest() || maxClamp.isInfinity()) && @@ -357,8 +358,8 @@ struct ClampIsNoOp : public OpRewritePattern { } if (inputElementType.isUnsignedInteger()) { - int64_t minClamp = op.min_int(); - int64_t maxClamp = op.max_int(); + int64_t minClamp = op.getMinInt(); + int64_t maxClamp = op.getMaxInt(); int64_t intMin = APInt::getMinValue(inputElementType.getIntOrFloatBitWidth()) @@ -375,8 +376,8 @@ struct ClampIsNoOp : public OpRewritePattern { } if (inputElementType.isa()) { - int64_t minClamp = op.min_int(); - int64_t maxClamp = op.max_int(); + int64_t minClamp = op.getMinInt(); + int64_t maxClamp = op.getMaxInt(); int64_t intMin = APInt::getSignedMinValue(inputElementType.getIntOrFloatBitWidth()) @@ -401,21 +402,22 @@ struct ClampClampOptimization : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::ClampOp op, PatternRewriter &rewriter) const override { - Value input = op.input(); + Value input = op.getInput(); Operation *definingOp = input.getDefiningOp(); if (!definingOp) return failure(); if (tosa::ClampOp clampOp = dyn_cast(definingOp)) { - auto minFp = std::max(op.min_fp(), clampOp.min_fp()).convertToFloat(); - auto maxFp = std::min(op.max_fp(), clampOp.max_fp()).convertToFloat(); + auto minFp = std::max(op.getMinFp(), clampOp.getMinFp()).convertToFloat(); + auto maxFp = std::min(op.getMaxFp(), clampOp.getMaxFp()).convertToFloat(); - auto minInt = std::max(op.min_int(), clampOp.min_int()); - auto maxInt = std::min(op.max_int(), clampOp.max_int()); + auto minInt = std::max(op.getMinInt(), clampOp.getMinInt()); + auto maxInt = std::min(op.getMaxInt(), clampOp.getMaxInt()); rewriter.replaceOpWithNewOp( - op, op.getType(), clampOp.input(), rewriter.getI64IntegerAttr(minInt), + op, op.getType(), clampOp.getInput(), + rewriter.getI64IntegerAttr(minInt), rewriter.getI64IntegerAttr(maxInt), rewriter.getF32FloatAttr(minFp), rewriter.getF32FloatAttr(maxFp)); return success(); @@ -436,14 +438,14 @@ void ClampOp::getCanonicalizationPatterns(RewritePatternSet &results, //===----------------------------------------------------------------------===// OpFoldResult CastOp::fold(ArrayRef operands) { - if (input().getType() == getType()) - return input(); + if (getInput().getType() == getType()) + return getInput(); return {}; } OpFoldResult ConstOp::fold(ArrayRef operands) { assert(operands.empty() && "constant has no operands"); - return valueAttr(); + return getValueAttr(); } #define REDUCE_FOLDER(OP) \ @@ -465,12 +467,12 @@ REDUCE_FOLDER(ReduceSumOp) #undef REDUCE_FOLDER OpFoldResult ReshapeOp::fold(ArrayRef operands) { - auto inputTy = input1().getType().dyn_cast(); + auto inputTy = getInput1().getType().dyn_cast(); auto outputTy = getType().dyn_cast(); if (!inputTy || !outputTy || inputTy != outputTy) return {}; - return input1(); + return getInput1(); } OpFoldResult PadOp::fold(ArrayRef operands) { @@ -478,7 +480,7 @@ OpFoldResult PadOp::fold(ArrayRef operands) { if (operands[1]) { auto densePad = operands[1].cast(); if (densePad.isSplat() && densePad.getSplatValue().isZero()) { - return input1(); + return getInput1(); } } @@ -486,20 +488,20 @@ OpFoldResult PadOp::fold(ArrayRef operands) { } OpFoldResult SliceOp::fold(ArrayRef operands) { - auto inputTy = input().getType().dyn_cast(); + auto inputTy = getInput().getType().dyn_cast(); auto outputTy = getType().dyn_cast(); if (!inputTy || !outputTy || inputTy != outputTy) return {}; if (inputTy.hasStaticShape()) - return input(); + return getInput(); return {}; } OpFoldResult tosa::SelectOp::fold(ArrayRef operands) { - if (on_true() == on_false()) - return on_true(); + if (getOnTrue() == getOnFalse()) + return getOnTrue(); auto predicate = operands[0].dyn_cast_or_null(); if (!predicate) @@ -507,18 +509,18 @@ OpFoldResult tosa::SelectOp::fold(ArrayRef operands) { if (!predicate.isSplat()) return {}; - return predicate.getSplatValue().getBoolValue() ? on_true() - : on_false(); + return predicate.getSplatValue().getBoolValue() ? getOnTrue() + : getOnFalse(); } OpFoldResult TileOp::fold(ArrayRef operands) { bool allOnes = true; - for (Attribute val : multiples().getValue()) { + for (Attribute val : getMultiples().getValue()) { allOnes = allOnes && val.cast().getValue().getSExtValue() == 1; } - if (allOnes && input1().getType() == getType()) - return input1(); + if (allOnes && getInput1().getType() == getType()) + return getInput1(); return {}; } @@ -537,7 +539,7 @@ OpFoldResult TransposeOp::fold(ArrayRef operands) { [](const APInt &val) { return val.getSExtValue(); })); if (llvm::equal(llvm::seq(0, perms.size()), perms) && - input1().getType() == getType()) - return input1(); + getInput1().getType() == getType()) + return getInput1(); return {}; } diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp index 38a067bcd65512..11ff2a00fcba1d 100644 --- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp +++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp @@ -67,7 +67,7 @@ struct TosaInlinerInterface : public DialectInlinerInterface { //===----------------------------------------------------------------------===// /// Returns the while loop body. -Region &tosa::WhileOp::getLoopBody() { return body(); } +Region &tosa::WhileOp::getLoopBody() { return getBody(); } //===----------------------------------------------------------------------===// // Tosa dialect initialization. @@ -101,16 +101,18 @@ Operation *TosaDialect::materializeConstant(OpBuilder &builder, Attribute value, template static LogicalResult verifyConvOp(T op) { // All TOSA conv ops have an input() and weight(). - auto inputType = op.input().getType().template dyn_cast(); - auto weightType = op.weight().getType().template dyn_cast(); + auto inputType = + op.getInput().getType().template dyn_cast(); + auto weightType = + op.getWeight().getType().template dyn_cast(); // Must be ranked tensor types if (!inputType) { - op.emitOpError("expect a ranked tensor for input, got ") << op.input(); + op.emitOpError("expect a ranked tensor for input, got ") << op.getInput(); return failure(); } if (!weightType) { - op.emitOpError("expect a ranked tensor for weight, got ") << op.weight(); + op.emitOpError("expect a ranked tensor for weight, got ") << op.getWeight(); return failure(); } @@ -130,8 +132,8 @@ static LogicalResult verifyConvOp(T op) { // Quantized type must have constructed the quantizationattr, and unquantized // types should not have a quantizationattr. - if ((inputIsQuant && !op.quantization_info()) || - (!inputIsQuant && op.quantization_info())) { + if ((inputIsQuant && !op.getQuantizationInfo()) || + (!inputIsQuant && op.getQuantizationInfo())) { op.emitOpError("quantizationattr is required for quantized type, and not " "allowed for float type"); return failure(); @@ -141,7 +143,7 @@ static LogicalResult verifyConvOp(T op) { } LogicalResult tosa::AvgPool2dOp::verify() { - auto inputETy = input().getType().cast().getElementType(); + auto inputETy = getInput().getType().cast().getElementType(); auto resultETy = getType().cast().getElementType(); if (auto quantType = inputETy.dyn_cast()) @@ -538,7 +540,7 @@ LogicalResult tosa::SliceOp::inferReturnTypeComponents( MLIRContext *context, ::llvm::Optional location, ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnShapes) { - ArrayAttr sizes = SliceOpAdaptor(operands, attributes).size(); + ArrayAttr sizes = SliceOpAdaptor(operands, attributes).getSize(); SmallVector outputShape; outputShape.reserve(sizes.size()); for (auto val : sizes) { @@ -570,7 +572,7 @@ LogicalResult tosa::TileOp::inferReturnTypeComponents( ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnShapes) { TileOpAdaptor adaptor(operands, attributes); - ArrayAttr multiples = adaptor.multiples(); + ArrayAttr multiples = adaptor.getMultiples(); ShapeAdaptor inputShape = operands.getShape(0); SmallVector outputShape; if (!inputShape.hasRank()) { @@ -606,7 +608,7 @@ LogicalResult tosa::ReshapeOp::inferReturnTypeComponents( ReshapeOpAdaptor adaptor(operands, attributes); ShapeAdaptor inputShape = operands.getShape(0); - ArrayAttr newShape = adaptor.new_shape(); + ArrayAttr newShape = adaptor.getNewShape(); llvm::SmallVector newShapeValue; getI64Values(newShape, newShapeValue); @@ -741,7 +743,7 @@ LogicalResult tosa::ResizeOp::inferReturnTypeComponents( int32_t inHeight = ShapedType::kDynamicSize; int32_t inWidth = ShapedType::kDynamicSize; - ShapeAdaptor inputShape = operands.getShape(adaptor.input()); + ShapeAdaptor inputShape = operands.getShape(adaptor.getInput()); if (inputShape.hasRank()) { outputShape[0] = inputShape.getDimSize(0); outputShape[3] = inputShape.getDimSize(3); @@ -750,9 +752,9 @@ LogicalResult tosa::ResizeOp::inferReturnTypeComponents( inWidth = inputShape.getDimSize(2); } - int32_t shift = adaptor.shift(); + int32_t shift = adaptor.getShift(); llvm::SmallVector newShape; - getI64Values(adaptor.output_size(), newShape); + getI64Values(adaptor.getOutputSize(), newShape); outputShape[1] = newShape[0]; outputShape[2] = newShape[1]; @@ -760,10 +762,10 @@ LogicalResult tosa::ResizeOp::inferReturnTypeComponents( llvm::SmallVector offsetInt; llvm::SmallVector strideFp; llvm::SmallVector offsetFp; - getI64Values(adaptor.offset(), offsetInt); - getF64Values(adaptor.offset_fp(), offsetFp); - getI64Values(adaptor.stride(), strideInt); - getF64Values(adaptor.stride_fp(), strideFp); + getI64Values(adaptor.getOffset(), offsetInt); + getF64Values(adaptor.getOffsetFp(), offsetFp); + getI64Values(adaptor.getStride(), strideInt); + getF64Values(adaptor.getStrideFp(), strideFp); // If we have a 0 zero in integers we know that the resize indexing needs to // be performed in floating point. Use the floating point varient to compute @@ -1022,7 +1024,7 @@ LogicalResult Conv2DOp::inferReturnTypeComponents( // Input shape describes input width/height and batch. - ShapeAdaptor inputShape = operands.getShape(adaptor.input()); + ShapeAdaptor inputShape = operands.getShape(adaptor.getInput()); if (inputShape.hasRank()) { outputShape[0] = inputShape.getDimSize(0); inputHeight = inputShape.getDimSize(1); @@ -1030,7 +1032,7 @@ LogicalResult Conv2DOp::inferReturnTypeComponents( } // Weight shapes describes the filter width/height and the output channels. - ShapeAdaptor weightShape = operands.getShape(adaptor.weight()); + ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight()); if (weightShape.hasRank()) { outputShape[3] = weightShape.getDimSize(0); weightHeight = weightShape.getDimSize(1); @@ -1038,7 +1040,7 @@ LogicalResult Conv2DOp::inferReturnTypeComponents( } // Bias shape can describe the output channels. - ShapeAdaptor biasShape = operands.getShape(adaptor.bias()); + ShapeAdaptor biasShape = operands.getShape(adaptor.getBias()); if (biasShape.hasRank()) { outputShape[3] = ShapedType::isDynamic(outputShape[3]) ? biasShape.getDimSize(0) @@ -1049,9 +1051,9 @@ LogicalResult Conv2DOp::inferReturnTypeComponents( llvm::SmallVector padding; llvm::SmallVector stride; - getI64Values(adaptor.dilation(), dilation); - getI64Values(adaptor.pad(), padding); - getI64Values(adaptor.stride(), stride); + getI64Values(adaptor.getDilation(), dilation); + getI64Values(adaptor.getPad(), padding); + getI64Values(adaptor.getStride(), stride); if (!ShapedType::isDynamic(inputHeight) && !ShapedType::isDynamic(weightHeight)) { @@ -1091,7 +1093,7 @@ LogicalResult Conv3DOp::inferReturnTypeComponents( int32_t weightDepth = ShapedType::kDynamicSize; // Input shape describes input width/height and batch. - ShapeAdaptor inputShape = operands.getShape(adaptor.input()); + ShapeAdaptor inputShape = operands.getShape(adaptor.getInput()); if (inputShape.hasRank()) { outputShape[0] = inputShape.getDimSize(0); inputHeight = inputShape.getDimSize(1); @@ -1100,7 +1102,7 @@ LogicalResult Conv3DOp::inferReturnTypeComponents( } // Weight shapes describes the filter width/height and the output channels. - ShapeAdaptor weightShape = operands.getShape(adaptor.weight()); + ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight()); if (weightShape.hasRank()) { outputShape[4] = weightShape.getDimSize(0); weightHeight = weightShape.getDimSize(1); @@ -1109,7 +1111,7 @@ LogicalResult Conv3DOp::inferReturnTypeComponents( } // Bias shape can describe the output channels. - ShapeAdaptor biasShape = operands.getShape(adaptor.bias()); + ShapeAdaptor biasShape = operands.getShape(adaptor.getBias()); if (biasShape.hasRank()) { outputShape[4] = (outputShape[4] == -1) ? biasShape.getDimSize(0) : outputShape[4]; @@ -1119,9 +1121,9 @@ LogicalResult Conv3DOp::inferReturnTypeComponents( llvm::SmallVector padding; llvm::SmallVector stride; - getI64Values(adaptor.dilation(), dilation); - getI64Values(adaptor.pad(), padding); - getI64Values(adaptor.stride(), stride); + getI64Values(adaptor.getDilation(), dilation); + getI64Values(adaptor.getPad(), padding); + getI64Values(adaptor.getStride(), stride); if (!ShapedType::isDynamic(inputHeight) && !ShapedType::isDynamic(weightHeight)) { @@ -1183,7 +1185,7 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents( int32_t depthChannels = ShapedType::kDynamicSize; // Input shape describes input width/height and batch. - ShapeAdaptor inputShape = operands.getShape(adaptor.input()); + ShapeAdaptor inputShape = operands.getShape(adaptor.getInput()); if (inputShape.hasRank()) { outputShape[0] = inputShape.getDimSize(0); inputHeight = inputShape.getDimSize(1); @@ -1192,7 +1194,7 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents( } // Weight shapes describes the filter width/height and the output channels. - ShapeAdaptor weightShape = operands.getShape(adaptor.weight()); + ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight()); if (weightShape.hasRank()) { weightHeight = weightShape.getDimSize(0); weightWidth = weightShape.getDimSize(1); @@ -1210,7 +1212,7 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents( } // Bias shape can describe the output channels. - ShapeAdaptor biasShape = operands.getShape(adaptor.bias()); + ShapeAdaptor biasShape = operands.getShape(adaptor.getBias()); if (biasShape.hasRank()) { outputShape[3] = ShapedType::isDynamic(outputShape[3]) ? biasShape.getDimSize(0) @@ -1221,9 +1223,9 @@ LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents( llvm::SmallVector padding; llvm::SmallVector stride; - getI64Values(adaptor.dilation(), dilation); - getI64Values(adaptor.pad(), padding); - getI64Values(adaptor.stride(), stride); + getI64Values(adaptor.getDilation(), dilation); + getI64Values(adaptor.getPad(), padding); + getI64Values(adaptor.getStride(), stride); if (!ShapedType::isDynamic(inputHeight) && !ShapedType::isDynamic(weightHeight)) { @@ -1253,7 +1255,7 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents( SmallVectorImpl &inferredReturnShapes) { TransposeConv2DOp::Adaptor adaptor(operands.getValues(), attributes); llvm::SmallVector outputShape; - getI64Values(adaptor.out_shape(), outputShape); + getI64Values(adaptor.getOutShape(), outputShape); int32_t inputWidth = ShapedType::kDynamicSize; int32_t inputHeight = ShapedType::kDynamicSize; @@ -1261,7 +1263,7 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents( int32_t weightHeight = ShapedType::kDynamicSize; // Input shape describes input width/height and batch. - ShapeAdaptor inputShape = operands.getShape(adaptor.input()); + ShapeAdaptor inputShape = operands.getShape(adaptor.getInput()); if (inputShape.hasRank()) { outputShape[0] = ShapedType::isDynamic(outputShape[0]) ? inputShape.getDimSize(0) @@ -1271,7 +1273,7 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents( } // Weight shapes describes the filter width/height and the output channels. - ShapeAdaptor weightShape = operands.getShape(adaptor.filter()); + ShapeAdaptor weightShape = operands.getShape(adaptor.getFilter()); if (weightShape.hasRank()) { outputShape[3] = ShapedType::isDynamic(outputShape[3]) ? weightShape.getDimSize(0) @@ -1281,7 +1283,7 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents( } // Bias shape can describe the output channels. - ShapeAdaptor biasShape = operands.getShape(adaptor.input()); + ShapeAdaptor biasShape = operands.getShape(adaptor.getInput()); if (biasShape.hasRank()) { outputShape[3] = ShapedType::isDynamic(outputShape[3]) ? biasShape.getDimSize(0) @@ -1291,8 +1293,8 @@ LogicalResult TransposeConv2DOp::inferReturnTypeComponents( llvm::SmallVector padding; llvm::SmallVector stride; - getI64Values(adaptor.out_pad(), padding); - getI64Values(adaptor.stride(), stride); + getI64Values(adaptor.getOutPad(), padding); + getI64Values(adaptor.getStride(), stride); if (!ShapedType::isDynamic(inputHeight) && !ShapedType::isDynamic(weightHeight)) { diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp index cde230da0f01f6..5898fadddef322 100644 --- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp +++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeConv2D.cpp @@ -25,8 +25,8 @@ struct Conv2DIsFullyConnected : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::Conv2DOp op, PatternRewriter &rewriter) const override { - Value input = op.input(); - Value weight = op.weight(); + Value input = op.getInput(); + Value weight = op.getWeight(); ShapedType inputType = input.getType().cast(); ShapedType weightType = weight.getType().cast(); ShapedType resultType = op.getType().cast(); @@ -41,7 +41,7 @@ struct Conv2DIsFullyConnected : public OpRewritePattern { return rewriter.notifyMatchFailure(op, "unranked weight input"); // Stride must be 1 for this optimization. - for (APInt stride : op.stride().getAsValueRange()) { + for (APInt stride : op.getStride().getAsValueRange()) { if (!stride.isOne()) return failure(); } @@ -83,18 +83,18 @@ struct Conv2DIsFullyConnected : public OpRewritePattern { RankedTensorType::get(fullyConnectedShape, resultType.getElementType()); Value fullyConnectedValue; - if (op.quantization_info()) { + if (op.getQuantizationInfo()) { fullyConnectedValue = rewriter .create( op.getLoc(), fullyConnectedShapeType, reshapedInput, - reshapedWeight, op.bias(), *op.quantization_info()) + reshapedWeight, op.getBias(), *op.getQuantizationInfo()) .getResult(); } else { fullyConnectedValue = rewriter .create( op.getLoc(), fullyConnectedShapeType, - reshapedInput, reshapedWeight, op.bias()) + reshapedInput, reshapedWeight, op.getBias()) .getResult(); } diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp index b4bac42029e495..d82a13ea6f5155 100644 --- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp +++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeDepthwise.cpp @@ -26,11 +26,11 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::DepthwiseConv2DOp op, PatternRewriter &rewriter) const override { - Value input = op.input(); - Value weight = op.weight(); + Value input = op.getInput(); + Value weight = op.getWeight(); ShapedType inputType = input.getType().cast(); ShapedType weightType = weight.getType().cast(); - ShapedType resultType = op.output().getType().cast(); + ShapedType resultType = op.getOutput().getType().cast(); Type inputEType = inputType.getElementType(); if (!(inputType.hasStaticShape() && weightType.hasStaticShape() && @@ -39,12 +39,12 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern { } // Quantization information needs to still be performed. - if (op.quantization_info() || !inputEType.isa()) { + if (op.getQuantizationInfo() || !inputEType.isa()) { return failure(); } // Stride must be 1 for this optimization. - for (Attribute stride : op.stride().getValue()) { + for (Attribute stride : op.getStride().getValue()) { if (!stride.cast().getValue().isOne()) { return failure(); } @@ -95,7 +95,7 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern { .getResult(); // Reshape output to [N, H, W, C * M]. - auto outputShape = op.output().getType().cast().getShape(); + auto outputShape = op.getOutput().getType().cast().getShape(); auto outputShapeType = RankedTensorType::get( outputShape, input.getType().dyn_cast().getElementType()); @@ -106,7 +106,7 @@ struct DepthwiseConv2DIsMul : public OpRewritePattern { // Add in the bias. rewriter .replaceOpWithNewOp(op, outputShapeType, outputValue, - op.bias()) + op.getBias()) .getResult(); return success(); } diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp index 9db99c517c5405..148130a6aa1470 100644 --- a/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp +++ b/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp @@ -98,8 +98,8 @@ class TransposeConvNonStridedConverter llvm::SmallVector pad; llvm::SmallVector stride; - getValuesFromIntArrayAttribute(op.out_pad().cast(), pad); - getValuesFromIntArrayAttribute(op.stride().cast(), stride); + getValuesFromIntArrayAttribute(op.getOutPad().cast(), pad); + getValuesFromIntArrayAttribute(op.getStride().cast(), stride); // If striding is all 1 we can modify padding and reverse the kernel along // the x/y direction to make it a regular convolution. This is much simpler @@ -126,11 +126,11 @@ class TransposeConvNonStridedConverter loc, weightTy, reverse1, rewriter.getI64IntegerAttr(2)); Value conv2d; - if (op.quantization_info()) { + if (op.getQuantizationInfo()) { conv2d = rewriter.create( loc, resultTy, input, reverse2, bias, rewriter.getI64ArrayAttr(convPad), rewriter.getI64ArrayAttr(stride), - rewriter.getI64ArrayAttr({1, 1}), *op.quantization_info()); + rewriter.getI64ArrayAttr({1, 1}), *op.getQuantizationInfo()); } else { conv2d = rewriter.create( loc, resultTy, input, reverse2, bias, @@ -167,8 +167,8 @@ class TransposeConvStridedConverter llvm::SmallVector pad; llvm::SmallVector stride; - getValuesFromIntArrayAttribute(op.out_pad().cast(), pad); - getValuesFromIntArrayAttribute(op.stride().cast(), stride); + getValuesFromIntArrayAttribute(op.getOutPad().cast(), pad); + getValuesFromIntArrayAttribute(op.getStride().cast(), stride); // If striding is all 1 we can modify padding and reverse the kernel along // the x/y direction to make it a regular convolution. This is much simpler @@ -200,8 +200,8 @@ class TransposeConvStridedConverter Value weightPaddingVal = createOpAndInfer( rewriter, loc, weightPaddingAttr.getType(), weightPaddingAttr); - if (op.quantization_info().has_value()) { - auto quantInfo = op.quantization_info().value(); + if (op.getQuantizationInfo().has_value()) { + auto quantInfo = op.getQuantizationInfo().value(); weight = createOpAndInfer( rewriter, loc, UnrankedTensorType::get(weightETy), weight, weightPaddingVal, nullptr, @@ -264,8 +264,8 @@ class TransposeConvStridedConverter Value inputPaddingVal = createOpAndInfer( rewriter, loc, inputPaddingAttr.getType(), inputPaddingAttr); - if (op.quantization_info().has_value()) { - auto quantInfo = op.quantization_info().value(); + if (op.getQuantizationInfo().has_value()) { + auto quantInfo = op.getQuantizationInfo().value(); input = createOpAndInfer( rewriter, loc, UnrankedTensorType::get(inputETy), input, inputPaddingVal, nullptr, @@ -288,14 +288,14 @@ class TransposeConvStridedConverter // Perform the convolution using the zero bias. Value conv2d; - if (op.quantization_info()) { + if (op.getQuantizationInfo()) { conv2d = createOpAndInfer( rewriter, loc, UnrankedTensorType::get(resultETy), input, weight, zeroBias, /*pad=*/rewriter.getI64ArrayAttr({0, 0, 0, 0}), /*stride=*/rewriter.getI64ArrayAttr({1, 1}), /*dilation=*/rewriter.getI64ArrayAttr({1, 1}), - *op.quantization_info()) + *op.getQuantizationInfo()) .getResult(); } else { conv2d = createOpAndInfer( diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp index 5f14cf68321afe..f86605da54ef25 100644 --- a/mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp +++ b/mlir/lib/Dialect/Tosa/Transforms/TosaFoldConstantTranspose.cpp @@ -31,21 +31,21 @@ struct TosaFoldConstantTranspose : public OpRewritePattern { return failure(); DenseElementsAttr inputValues; - if (!matchPattern(op.input1(), m_Constant(&inputValues))) + if (!matchPattern(op.getInput1(), m_Constant(&inputValues))) return failure(); // Make sure the input is a constant that has a single user. - if (!llvm::hasSingleElement(op.input1().getDefiningOp()->getUsers())) + if (!llvm::hasSingleElement(op.getInput1().getDefiningOp()->getUsers())) return failure(); DenseIntElementsAttr permAttr; - if (!matchPattern(op.perms(), m_Constant(&permAttr))) + if (!matchPattern(op.getPerms(), m_Constant(&permAttr))) return failure(); auto permValues = llvm::to_vector<6>(llvm::map_range( // TOSA allows both 32- and 64-bit integer tensors here. permAttr.getValues(), [](const APInt &val) { return val.getZExtValue(); })); - auto inputType = op.input1().getType().cast(); + auto inputType = op.getInput1().getType().cast(); ArrayRef inputShape = inputType.getShape(); int64_t numElements = inputType.getNumElements(); diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp index e24a81ed249baa..61f601456f0f13 100644 --- a/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp +++ b/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp @@ -144,8 +144,8 @@ struct ConvertTosaOp : public OpRewritePattern { LogicalResult matchAndRewrite(OpTy tosaBinaryOp, PatternRewriter &rewriter) const override { - Value input1 = tosaBinaryOp.input1(); - Value input2 = tosaBinaryOp.input2(); + Value input1 = tosaBinaryOp.getInput1(); + Value input2 = tosaBinaryOp.getInput2(); Value output = tosaBinaryOp.getResult(); auto outputType = output.getType().dyn_cast(); @@ -174,9 +174,9 @@ struct ConvertTosaOp : public OpRewritePattern { LogicalResult matchAndRewrite(tosa::MulOp tosaBinaryOp, PatternRewriter &rewriter) const override { - Value input1 = tosaBinaryOp.input1(); - Value input2 = tosaBinaryOp.input2(); - int32_t shift = tosaBinaryOp.shift(); + Value input1 = tosaBinaryOp.getInput1(); + Value input2 = tosaBinaryOp.getInput2(); + int32_t shift = tosaBinaryOp.getShift(); Value output = tosaBinaryOp.getResult(); auto outputType = output.getType().dyn_cast(); if (!outputType) @@ -206,9 +206,9 @@ struct ConvertTosaOp LogicalResult matchAndRewrite(tosa::ArithmeticRightShiftOp tosaBinaryOp, PatternRewriter &rewriter) const override { - Value input1 = tosaBinaryOp.input1(); - Value input2 = tosaBinaryOp.input2(); - int32_t round = tosaBinaryOp.round(); + Value input1 = tosaBinaryOp.getInput1(); + Value input2 = tosaBinaryOp.getInput2(); + int32_t round = tosaBinaryOp.getRound(); Value output = tosaBinaryOp.getResult(); auto outputType = output.getType().dyn_cast(); if (!outputType) diff --git a/mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp b/mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp index e7f3a40f307bb7..ec103b75fa0828 100644 --- a/mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp +++ b/mlir/test/lib/Dialect/Tosa/TosaTestPasses.cpp @@ -42,7 +42,7 @@ ConvertTosaNegateOp::matchAndRewrite(Operation *op, auto tosaNegateOp = cast(op); auto inputType = - tosaNegateOp.input1().getType().dyn_cast(); + tosaNegateOp.getInput1().getType().dyn_cast(); // skip if input is not ranked tensor type if (!inputType) return failure(); @@ -83,7 +83,7 @@ ConvertTosaNegateOp::matchAndRewrite(Operation *op, rewriter.getBoolAttr(narrowRange))); ElementsAttr inputElems; - if (!matchPattern(tosaNegateOp.input1(), m_Constant(&inputElems))) + if (!matchPattern(tosaNegateOp.getInput1(), m_Constant(&inputElems))) return failure(); auto newConstOp = @@ -112,14 +112,14 @@ ConvertTosaConv2DOp::matchAndRewrite(Operation *op, auto tosaConv2DOp = cast(op); auto inputType = - tosaConv2DOp.input().getType().dyn_cast(); + tosaConv2DOp.getInput().getType().dyn_cast(); // skip if input is not ranked tensor type if (!inputType) return failure(); auto weightType = - tosaConv2DOp.weight().getType().dyn_cast(); + tosaConv2DOp.getWeight().getType().dyn_cast(); // skip if wt is not ranked tensor type if (!weightType) @@ -146,9 +146,9 @@ ConvertTosaConv2DOp::matchAndRewrite(Operation *op, RankedTensorType::get(outputType.getShape(), rewriter.getIntegerType(32)); auto newTosaConv2DOp = rewriter.create( - op->getLoc(), newTosaConv2DOpType, tosaConv2DOp.input(), - tosaConv2DOp.weight(), tosaConv2DOp.bias(), tosaConv2DOp.pad(), - tosaConv2DOp.stride(), tosaConv2DOp.dilation()); + op->getLoc(), newTosaConv2DOpType, tosaConv2DOp.getInput(), + tosaConv2DOp.getWeight(), tosaConv2DOp.getBias(), tosaConv2DOp.getPad(), + tosaConv2DOp.getStride(), tosaConv2DOp.getDilation()); // Create rescale to quantized type double inputScale = inputQType.getScale();