-
Notifications
You must be signed in to change notification settings - Fork 101
/
main.py
154 lines (123 loc) · 5.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import os
import numpy as np
from datetime import datetime
import argparse
from utils import _logger, set_requires_grad
from dataloader.dataloader import data_generator
from trainer.trainer import Trainer, model_evaluate
from models.TC import TC
from utils import _calc_metrics, copy_Files
from models.model import base_Model
# Args selections
start_time = datetime.now()
parser = argparse.ArgumentParser()
######################## Model parameters ########################
home_dir = os.getcwd()
parser.add_argument('--experiment_description', default='Exp1', type=str,
help='Experiment Description')
parser.add_argument('--run_description', default='run1', type=str,
help='Experiment Description')
parser.add_argument('--seed', default=0, type=int,
help='seed value')
parser.add_argument('--training_mode', default='supervised', type=str,
help='Modes of choice: random_init, supervised, self_supervised, fine_tune, train_linear')
parser.add_argument('--selected_dataset', default='Epilepsy', type=str,
help='Dataset of choice: sleepEDF, HAR, Epilepsy, pFD')
parser.add_argument('--logs_save_dir', default='experiments_logs', type=str,
help='saving directory')
parser.add_argument('--device', default='cuda', type=str,
help='cpu or cuda')
parser.add_argument('--home_path', default=home_dir, type=str,
help='Project home directory')
args = parser.parse_args()
device = torch.device(args.device)
experiment_description = args.experiment_description
data_type = args.selected_dataset
method = 'TS-TCC'
training_mode = args.training_mode
run_description = args.run_description
logs_save_dir = args.logs_save_dir
os.makedirs(logs_save_dir, exist_ok=True)
exec(f'from config_files.{data_type}_Configs import Config as Configs')
configs = Configs()
# ##### fix random seeds for reproducibility ########
SEED = args.seed
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
#####################################################
experiment_log_dir = os.path.join(logs_save_dir, experiment_description, run_description, training_mode + f"_seed_{SEED}")
os.makedirs(experiment_log_dir, exist_ok=True)
# loop through domains
counter = 0
src_counter = 0
# Logging
log_file_name = os.path.join(experiment_log_dir, f"logs_{datetime.now().strftime('%d_%m_%Y_%H_%M_%S')}.log")
logger = _logger(log_file_name)
logger.debug("=" * 45)
logger.debug(f'Dataset: {data_type}')
logger.debug(f'Method: {method}')
logger.debug(f'Mode: {training_mode}')
logger.debug("=" * 45)
# Load datasets
data_path = f"./data/{data_type}"
train_dl, valid_dl, test_dl = data_generator(data_path, configs, training_mode)
logger.debug("Data loaded ...")
# Load Model
model = base_Model(configs).to(device)
temporal_contr_model = TC(configs, device).to(device)
if training_mode == "fine_tune":
# load saved model of this experiment
load_from = os.path.join(os.path.join(logs_save_dir, experiment_description, run_description, f"self_supervised_seed_{SEED}", "saved_models"))
chkpoint = torch.load(os.path.join(load_from, "ckp_last.pt"), map_location=device)
pretrained_dict = chkpoint["model_state_dict"]
model_dict = model.state_dict()
del_list = ['logits']
pretrained_dict_copy = pretrained_dict.copy()
for i in pretrained_dict_copy.keys():
for j in del_list:
if j in i:
del pretrained_dict[i]
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
if training_mode == "train_linear" or "tl" in training_mode:
load_from = os.path.join(os.path.join(logs_save_dir, experiment_description, run_description, f"self_supervised_seed_{SEED}", "saved_models"))
chkpoint = torch.load(os.path.join(load_from, "ckp_last.pt"), map_location=device)
pretrained_dict = chkpoint["model_state_dict"]
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# delete these parameters (Ex: the linear layer at the end)
del_list = ['logits']
pretrained_dict_copy = pretrained_dict.copy()
for i in pretrained_dict_copy.keys():
for j in del_list:
if j in i:
del pretrained_dict[i]
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
set_requires_grad(model, pretrained_dict, requires_grad=False) # Freeze everything except last layer.
if training_mode == "random_init":
model_dict = model.state_dict()
# delete all the parameters except for logits
del_list = ['logits']
pretrained_dict_copy = model_dict.copy()
for i in pretrained_dict_copy.keys():
for j in del_list:
if j in i:
del model_dict[i]
set_requires_grad(model, model_dict, requires_grad=False) # Freeze everything except last layer.
model_optimizer = torch.optim.Adam(model.parameters(), lr=configs.lr, betas=(configs.beta1, configs.beta2), weight_decay=3e-4)
temporal_contr_optimizer = torch.optim.Adam(temporal_contr_model.parameters(), lr=configs.lr, betas=(configs.beta1, configs.beta2), weight_decay=3e-4)
if training_mode == "self_supervised": # to do it only once
copy_Files(os.path.join(logs_save_dir, experiment_description, run_description), data_type)
# Trainer
Trainer(model, temporal_contr_model, model_optimizer, temporal_contr_optimizer, train_dl, valid_dl, test_dl, device, logger, configs, experiment_log_dir, training_mode)
if training_mode != "self_supervised":
# Testing
outs = model_evaluate(model, temporal_contr_model, test_dl, device, training_mode)
total_loss, total_acc, pred_labels, true_labels = outs
_calc_metrics(pred_labels, true_labels, experiment_log_dir, args.home_path)
logger.debug(f"Training time is : {datetime.now()-start_time}")