-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiment.py
884 lines (753 loc) · 35.2 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
# ==================================================================== #
# Class for running synchronization experiments.
# Author: Eddie Lee edl56@cornell.edu
# ==================================================================== #
from .utils import *
import time
from datetime import datetime
from .axis_neuron import left_hand_col_indices,right_hand_col_indices
from .port import *
import dill
from subprocess import call
def ilogistic(x):
"""-np.log(1/x-1)"""
return -np.log(1/x-1)
def logistic(x):
"""Squish from real line to [0,1].
1/(1+np.exp(-x))
"""
return 1/(1+np.exp(-x))
class HandSyncExperiment(object):
def __init__(self,duration,trial_type,
parts_ix=None,
broadcast_port=5001,
anPort=7013,
fs=30,
rotation_angle=0,
check_directory=True,
verbose=False):
"""
Parameters
----------
duration : float
Seconds into past to analyze for real time coherence measure.
trial_type : str
'avatar','avatar0','hand','hand0'
parts_ix : list,None
Indices of the columns in an_port file to extract and analyze. If None, this will be
replaced automatically in start by the relevant hand.
broadcast_port : int,5001
fs : int
Sampling frequency for interpolated velocities.
rotation_angle : float
Radians by which subject would have to be rotated about z-axis (pointing up) to face along the x-axis.
check_directory : bool,True
"""
self.duration = duration
self.trialType = trial_type
self.broadcastPort = broadcast_port
self.rotAngle = rotation_angle
self.verbose=verbose
self.pause = [] # times when game was paused
self.unpause = [] # times when game was resumed
self.trialStartTimes = [] # times trials (excluding very first fully visible trial) were started
self.trialEndTimes = [] # times trials end (including very first fully visible trial) were started
self.anPort=anPort # port at which to receive AN calculation broadcast
# Check that data is being broadcast on anPort.
self._check_an_port()
# Clear current directory.
if len(os.listdir('./'))>0 and check_directory:
self._clear_cd()
def _clear_cd(self):
from shutil import rmtree
affirm='x'
while not affirm in 'yn':
affirm=input("Directory is not empty. Delete files? y/[n]")
if affirm=='y':
for f in os.listdir('./'):
try:
os.remove(f)
except OSError:
rmtree(f)
else:
raise Exception("There are files in current directory.")
def _check_an_port(self):
import socket
import select
try:
listenSock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
listenSock.setblocking(0)
listenSock.bind(('127.0.0.1',self.anPort))
ready = select.select([listenSock], [], [], 1)
if not ready[0]:
raise Exception("No data is being broadcast on port.")
finally:
listenSock.close()
def _load_avatar(self):
"""
This loads the correct avatar for comparison of performance. The handedness of the subject is
read in from left_or_right.txt.
Parameters
----------
Returns
-------
avatar : dict
Dictionary of avatar interpolation splines.
"""
from .pipeline import extract_motionbuilder_model2
handedness = open('%s/%s'%(DATADR,'left_or_right')).readline().rstrip()
# NOTE: This relies on the fact that these experiments took data from these avatar trials,
# but you should fetch just the avatar data from the original recordings.
if handedness=='left':
v = extract_motionbuilder_model2('avatar',0,'Right',return_time=False)
elif handedness=='right':
v = extract_motionbuilder_model2('avatar',0,'Left',return_time=False)
else:
print(handedness)
raise Exception
return v
def _load_avatar(self,return_subject=False):
"""
This loads the correct avatar for comparison of performance. The handedness of the subject is read in
from left_or_right.txt.
Parameters
----------
return_subject : bool,False
Returns
-------
avatar : dict
Dictionary of avatar interpolation splines.
"""
from .data_access import subject_settings_v3 as subject_settings
from .data_access import VRTrial3_1 as VRTrial
handedness = open('%s/%s'%(DATADR,'left_or_right')).readline().rstrip()
# NOTE: This relies on the fact that these experiments took data from these avatar trials, but you
# should fetch just the avatar data from the original recordings.
if handedness=='left':
person,modelhandedness,rotation,dr = subject_settings(0)
elif handedness=='right':
person,modelhandedness,rotation,dr = subject_settings(2)
else:
print(handedness)
raise Exception
trial = VRTrial(person,modelhandedness,rotation,dr)
avatar = trial.templateTrial
if return_subject:
subject = trial.subjectTrial
return avatar,subject
return avatar
def load_avatar(self,reverse_time=False,return_subject=False):
"""
This loads the correct avatar for comparison of performance. The handedness of the subject is read in
from left_or_right.txt.
Parameters
----------
reverse_time : bool,False
If True, play avatar motion backwards in time.
return_subject : bool,False
Returns
-------
avatar : dict
Dictionary of avatar interpolation splines.
"""
from .pipeline import extract_motionbuilder_model3_3
handedness = open('%s/%s'%(DATADR,'left_or_right')).readline().rstrip()
if handedness=='left':
v,t = extract_motionbuilder_model3_3('Right',reverse_time=reverse_time)
elif handedness=='right':
v,t = extract_motionbuilder_model3_3('Left',reverse_time=reverse_time)
else:
print(handedness)
raise Exception
return v
def wait_for_start(self,dt=.1):
"""
Wait til start file is written.
"""
while not os.path.isfile('%s/%s'%(DATADR,'start')):
time.sleep(dt)
def wait_for_start_time(self):
"""
Get the time at which the trial started.
Returns
-------
t0 : datetime
The time at which the trial was started.
"""
while not os.path.isfile('%s/%s'%(DATADR,'start_time')):
time.sleep(.5)
# Give some time for the initial time to be written by UE4.
time.sleep(.5)
with open('%s/%s'%(DATADR,'start_time'),'r') as f:
t0 = datetime.strptime(f.readline(),'%Y-%m-%dT%H:%M:%S.%f')
return t0
def wait_for_start_gpr(self):
"""
Once start_gpr has been written, erase self.subVBroadcast's memory of the history of
velocity.
"""
while not os.path.isfile('%s/%s'%(DATADR,'start_gpr')):
time.sleep(.5)
def read_pause(self):
readFile = False
while not readFile:
try:
with open('%s/%s'%(DATADR,'pause_time')) as f:
self.pause.append( datetime.strptime(f.readline(),'%Y-%m-%dT%H:%M:%S.%f') )
readFile = True
except IOError:
time.sleep(.02)
def read_this_setting(self):
"""
Read in window settings and trial start and end times from this_setting file. Times are appended to
self.trialStartTimes and self.trialEndTimes.
Returns
-------
thisDuration : float
thisFraction : float
"""
# Try to open and read. Sometimes there is a delay in accessibility because
# the file is being written.
success = False
while not success:
try:
with open('%s/%s'%(DATADR,'this_setting')) as f:
L = f.readline().split(',')
thisDuration,thisFraction = (float(i) for i in L[:2])
# start start times with the first trial after full visibility
self.trialStartTimes.append( datetime.strptime(L[2],'%Y-%m-%dT%H:%M:%S.%f') )
self.trialEndTimes.append( datetime.strptime(L[3],'%Y-%m-%dT%H:%M:%S.%f') )
success = True
except IOError:
pass
return thisDuration,thisFraction
def delete_file(self,fname,max_wait_time=1,dt=.02):
"""
Try to delete file in DATADR. Return False if deletion is unsuccessful in given time frame.
Parameters
----------
fname : str
Just the file name assuming that it is in DATADR.
max_wait_time : float
dt : float
Time to wait in each iteration of while loop.
"""
notDeleted = True
t0 = datetime.now()
while notDeleted:
try:
os.remove('%s/%s'%(DATADR,fname))
notDeleted = False
except OSError:
if (datetime.now()-t0).total_seconds()>max_wait_time:
print("Failed to delete %s."%fname)
return False
time.sleep(dt)
print("%s deleted."%fname)
return True
def define_update_broadcaster(self,reader,stopEvent,pauseEvent,
windowsInIndexUnits,realTimePerfEval,broadcast,
rotAngle,avatar,t0):
"""Define function for real time performance assessment.
Parameters
----------
reader : ANReader
stopEvent : threading.Event
pauseEvent : threading.Event
windowsInIndexUnits : int,
realTimePerfEval : DTWPerformance
broadcast : DataBroadcaster
rotAngle : float
avatar : Interpolation
t0 : datetime.datetime
Returns
-------
update_broadcaster : function
Function for updating the performance broadcast port with latest performance value.
"""
def update_broadcaster(performance,export=False):
try:
while not stopEvent.is_set():
pauseEvent.wait()
v,t,tAsDate = reader.copy_recent()
if len(v)>=(windowsInIndexUnits):
# Put into standard coordinate system (as in paper). Account for reflection symmetry.
v[:,1:] *= -1
v[:,:2] = rotate_xy(v[:,:2],rotAngle)
tAsDate,_ = remove_pause_intervals(tAsDate.tolist(),list(zip(self.pause,self.unpause)))
avv = fetch_matching_avatar_vel(avatar,np.array(tAsDate),t0)
# Calculate performance metric.
performance.append( realTimePerfEval.raw(v[:,1:],avv[:,1:],dt=1/30) )
# Update performance.
broadcast.update_payload('%1.2f'%performance[-1])
if self.verbose=='detailed':
print("new coherence is %s"%broadcast._payload)
if export:
if not os.path.isdir('realtime_velocities'):
os.mkdir('realtime_velocities')
dill.dump({'v':v,'avv':avv},open('realtime_velocities/%s.p'%str(export).zfill(4),
'wb'),-1)
export+=1
time.sleep(0.2)
finally:
print("updateBroadcastThread stopped")
return update_broadcaster
def run_cal(self,verbose=False,min_v=0.3,pause_before_run=0.):
"""
Run calibration recording. Have subjects stand straight facing direction of motion. Then, have them
jerk both hands forward in parallel lines. Then the respective angles for rotating the vector to be
along the x-axis will be calculated for the left and right hands and put into self.rotAngle.
Parameters
----------
verbose : bool,False
min_v : float,0.3
Subject must be moving at least this fast (m/s) along the xy-plane for the calibration to
register.
pause_before_run: float,0.
Number of seconds to wait before running. Used for debugging.
"""
from numpy.linalg import norm
counter = 0
calSuccess = False
fname = 'an_port_cal.txt'
while not calSuccess:
while os.path.isfile(fname):
fname = 'an_port_cal_%s.txt'%(str(counter).zfill(2))
counter+=1
input("Press Enter to calibrate...")
# Setup thread for recording port data.
recordThread = threading.Thread(target=record_AN_port,
args=(fname,self.anPort),
kwargs={'start_file':'start_cal','stop_file':'stop_cal'})
time.sleep(pause_before_run)
print("Running calibration.")
recordThread.start()
# Run calibration for a few seconds to give people a chance to move their hands.
with open('start_cal','w') as f:
f.write('')
time.sleep(5)
with open('stop_cal','w') as f:
f.write('')
time.sleep(.5)
# Delete signal files.
print("Done with calibration.")
self.delete_file('start_cal')
self.delete_file('stop_cal')
recordThread.join()
time.sleep(2)
# Load the data and find which direction the user is facing. Extract from that, the
# rotation angle needed about the z-axis (pointing up out of the ground) to make the person face the
# x-axis.
df = load_AN_port(fname,time_as_dt=False)
# Get xy vector.
vright = df.iloc[:,right_hand_col_indices()].values[:,:2]
vleft = df.iloc[:,left_hand_col_indices()].values[:,:2]
vright[:,1] *= -1
vleft[:,1] *= -1
sright = np.linalg.norm(vright,axis=1)
sleft = np.linalg.norm(vleft,axis=1)
try:
# Extract 80 percentile of speed for analysis (as long as it is at least min_v).
ix = (sright>=np.percentile(sright,80)) & (sright>min_v)
angleRight = extract_rot_angle(vright[ix])
ix = (sleft>=np.percentile(sleft,80)) & (sleft>min_v)
angleLeft = extract_rot_angle(vleft[ix])
calSuccess = True
except AssertionError:
print("Retry calibration.")
self.rotAngle = [-angleLeft,-angleRight]
print("Rotation angle to center left hand about x-axis is %1.1f degrees."%(
self.rotAngle[0]*180/np.pi))
print("Rotation angle to center right hand about x-axis is %1.1f degrees."%(
self.rotAngle[1]*180/np.pi))
@staticmethod
def read_cal(fname,min_v):
"""
Read calibration recording from file.
Parameters
----------
fname : str
Name of file to save as.
min_v : float,0.3
Subject must be moving at least this fast (m/s) along the xy-plane for the calibration to
register.
"""
from numpy.linalg import norm
# Load the data and find which direction the user is facing. Extract from that, the
# rotation angle needed about the z-axis (pointing up out of the ground) to make the person face the
# x-axis.
df = load_AN_port(fname,time_as_dt=False)
# Get xy vector.
vright = df.iloc[:,right_hand_col_indices()].values[:,:2]
vleft = df.iloc[:,left_hand_col_indices()].values[:,:2]
vright[:,1] *= -1
vleft[:,1] *= -1
sright = np.linalg.norm(vright,axis=1)
sleft = np.linalg.norm(vleft,axis=1)
# Extract 80 percentile of speed for analysis (as long as it is at least min_v).
ix = (sright>=np.percentile(sright,80)) & (sright>min_v)
angleRight = extract_rot_angle(vright[ix])
ix = (sleft>=np.percentile(sleft,80)) & (sleft>min_v)
angleLeft = extract_rot_angle(vleft[ix])
return [-angleLeft,-angleRight]
def run_lf(self,trial_duration):
"""
Run Leader-Follower experiment.
Parameters
----------
trial_duration : float
Duration in seconds for which to record data.
"""
suffix = 0
while os.path.isfile('an_port_%s.txt'%str(suffix).zfill(2)):
suffix += 1
recordThread = threading.Thread(target=record_AN_port,
args=('an_port_%s.txt'%str(suffix).zfill(2),self.anPort),
kwargs={'start_file':'start_lf','stop_file':'end_lf'})
with open('start_lf','w') as f:
f.write('')
recordThread.start()
time.sleep(trial_duration)
with open('end_lf','w') as f:
f.write('')
recordThread.join()
self.delete_file('start_lf')
self.delete_file('end_lf')
def run_vr(self,
update_delay=.3,
initial_window_duration=1.0,initial_vis_fraction=0.5,
min_window_duration=.5,max_window_duration=2,
min_vis_fraction=.1,max_vis_fraction=1.,
gpr_mean_prior=ilogistic(.42),
reverse_time=False,
verbose=False,
export_realtime_velocities=False):
"""
Run realtime analysis for experiment.
Parameters
----------
update_delay : float,.3
Number of seconds to wait between updating arrays when calculating realtime coherence.
initial_window_duration : float,1.0
initial_vis_fraction : float,0.5
min_window_duration : float,.5
max_window_duration : float,2
min_vis_fraction : float,.1
max_vis_fraction : float,.9
gpr_mean_prior : float,ilogistic(.42)
reverse_time : bool,False
verbose : bool,False
export_realtime_velocities : bool,False
For debugging. On every iteration of the real time performace evaluation, save the
subject and avatar velocities in the folder realtime_velocities.
Notes
-----
Code waits til when start_time becomes available to read in avatar start time.
The threads that are running:
0. reader thread to read velocities from Axis Neuron UDP port rebroadcast 7011.
1. updateBroadcastThread: assess subject's performance relative to the avatar and
update performance value
2. broadcastThread: broadcast subject's performance to port 5001
3. recordThread: record AN output from UDP rebroadcast @ self.anPort
Thread communication happens through members that are updated using thread locks.
In while loop, run GPR prediction step and write the next window duration and visible
fraction to file. Waiting for run_gpr and writing to next_setting.
When end is written, experiment ends.
"""
from .data_access import subject_settings_v3
from .data_access import VRTrial3_1 as VRTrial
from .coherence import GPREllipsoid,DTWPerformance
self.wait_for_start()
# Setup routines for calculating coherence.
gprmodel = GPREllipsoid(mean_performance=gpr_mean_prior,
tmin=min_window_duration,tmax=max_window_duration,
fmin=min_vis_fraction,fmax=max_vis_fraction)
realTimePerfEval = DTWPerformance()
gprPerfEval = DTWPerformance()
nextDuration = np.around(initial_window_duration,1)
nextFraction = np.around(initial_vis_fraction,1)
assert min_window_duration<=nextDuration<=max_window_duration
assert min_vis_fraction<=nextFraction<=max_vis_fraction
with open('%s/next_setting'%DATADR,'w') as f:
f.write('%1.1f,%1.1f'%(nextDuration,nextFraction))
with open('%s/this_setting'%DATADR,'w') as f:
f.write('%1.1f,%1.1f,%s,%s'%(0,0,datetime.now().isoformat(),datetime.now().isoformat()))
with open('%s/left_or_right'%DATADR,'r') as f:
handedness = f.read().rstrip() # of subject
if handedness=='left':
self.subPartsIx = left_hand_col_indices(False)
self.avPartsIx = right_hand_col_indices(False)
rotAngle = self.rotAngle[0]
else:
self.subPartsIx = right_hand_col_indices(False)
self.avPartsIx = left_hand_col_indices(False)
rotAngle = self.rotAngle[1]
avatar = self.load_avatar(reverse_time) # avatar for comparing velocities
windowsInIndexUnits = int(30*self.duration)
performance = [] # history of performance
pauseEvent = threading.Event()
pauseEvent.set()
self.endEvent = threading.Event() # Event to be set when end file is written
# Open port for communication with UE4 engine. This will send the current coherence value to
# UE4.
self.broadcast = DataBroadcaster(self.broadcastPort)
self.broadcast.update_payload('-1.0')
broadcastThread = threading.Thread(target=self.broadcast.broadcast,
kwargs={'pause':.2,'verbose':True if verbose=='detailed' else False})
broadcastThread.start()
# Setup thread for recording port data.
recordThread = threading.Thread(target=record_AN_port,args=('an_port.txt',self.anPort))
# Set up thread for updating value of streaming broadcast of coherence.
# This relies on reader to fetch data which is declared later.
self.updateBroadcastEvent = threading.Event()
# Define function for GPR updating. One thread updates the settings. The other updates GPR.
def update_settings(reader,gprmodel):
"""
1) GPR is updated.
2) Next trial setting is set.
3) GPR is optimized. This can take a long time so the safest thing to do is to run it
during a trial.
4) gprmodel and other data is saved into gpr.p.
"""
while not self.endEvent.is_set():
# This is only triggered during pauses in order to prevent unnecessary CPU overhead, but I
# don't think is necessary.
pauseEvent.wait()
# Update next trial settings and refresh reader history.
if os.path.isfile('%s/%s'%(DATADR,'run_gpr')):
print("successfully read run_gpr")
# Fetch user movement during trial.
v,t,tdateHistory=reader.copy_history()
# Put output from Axis Neuron into comparable coordinate system accounting for reflection
# symmetry.
v[:,1:]*=-1
v[:,:2]=rotate_xy(v[:,:2],rotAngle)
tdateHistory,_=remove_pause_intervals( tdateHistory.tolist(),
list(zip(self.pause,self.unpause)) )
avv=fetch_matching_avatar_vel(avatar,np.array(tdateHistory),t0)
# Update GPR with this trial's data.
# Try to open and read. Sometimes there is a delay in accessibility because
# the file is being written.
thisDuration,thisFraction=self.read_this_setting()
# Get subject performance ignoring the first few seconds of performance.
perf=gprPerfEval.time_average( avv[:,1:],v[:,1:],dt=1/30,bds=[2,np.inf] )
# Update GPR. For initial full visibility trial, update values for all values of fraction.
if thisDuration==0:
gprmodel.update( ilogistic(perf),0.,1. )
else:
gprmodel.update( ilogistic(perf),thisDuration,thisFraction )
# Get next trial settings and output them to a file that is read by UE4 before the start
# of the next trial.
# NOTE: There is no guarantee that this file is read before the next trial starts.
nextDuration,nextFraction=gprmodel.max_uncertainty()
if verbose:
#print call("ls --time-style='+%d-%m-%Y %H:%M:%S' -l this_setting",shell=True)
print("thisDuration: %1.1f\tthisFraction: %1.1f"%(thisDuration,thisFraction))
print("nextDuration: %1.1f\tnextFraction: %1.1f"%(nextDuration,nextFraction))
open('%s/next_setting'%DATADR,'w').write('%1.1f,%1.1f'%(nextDuration,nextFraction))
# Refresh history.
self.broadcast.update_payload('-1.0')
if verbose:print("Refreshing reader history (update_settings).")
reader.refresh()
# Optimize hyperparameters of GPR given the latest trial data.
# NOTE: This has to finish running before the trial ends. Right now, there is no guarantee
# that it will.
if verbose:print("Running GPR on this trial...")
gprmodel.optimize_hyperparams(verbose=verbose,n_restarts=1)
# Cleanup.
self.delete_file('run_gpr')
dill.dump({'gprmodel':gprmodel,'performance':performance,
'pause':self.pause,'unpause':self.unpause,
'trialStartTimes':self.trialStartTimes,
'trialEndTimes':self.trialEndTimes},
open('%s/%s'%(DATADR,'gpr.p'),'wb'),-1)
time.sleep(.05)
# Wait til start_time has been written to start experiment.
t0 = self.wait_for_start_time()
if verbose:print("Starting threads.")
recordThread.start()
with ANReader(self.duration,self.subPartsIx,
port=7011,
verbose=True if verbose=='detailed' else False,
port_buffer_size=8192,
recent_buffer_size=(self.duration+1)*30) as reader:
updateBroadcastThread = threading.Thread(
target=self.define_update_broadcaster(reader,self.updateBroadcastEvent,pauseEvent,
windowsInIndexUnits,realTimePerfEval,self.broadcast,
rotAngle,avatar,t0),
args=(performance,export_realtime_velocities,) )
while reader.len_history()<windowsInIndexUnits:
if verbose:print("Waiting to collect more data...(%d)"%reader.len_history())
self.broadcast.update_payload('-1.0')
time.sleep(.25)
updateBroadcastThread.start()
# Start GPR thread.
settingsThread=threading.Thread(target=update_settings,args=(reader,gprmodel))
settingsThread.start()
while not os.path.isfile('%s/%s'%(DATADR,'end')):
# If UE4 has been paused
if os.path.isfile('%s/%s'%(DATADR,'pause_time')):
pauseEvent.clear()
if verbose:print("Paused.")
self.read_pause()
self.delete_file('pause_time')
while not os.path.isfile('%s/%s'%(DATADR,'unpause_time')):
time.sleep(.01)
# Try to open and read unpause_time. Sometimes there is a delay in accessibility because
# the file is being written.
success = False
while not success:
try:
with open('%s/%s'%(DATADR,'unpause_time')) as f:
self.unpause.append( datetime.strptime(f.readline(),'%Y-%m-%dT%H:%M:%S.%f') )
success = True
pauseEvent.set()
if verbose:print("Unpaused.")
except IOError:
pass
self.delete_file('unpause_time')
if verbose:print("Refreshing reader history (pause).")
reader.refresh()
time.sleep(.1)
if verbose:print("Ending threads...")
self.stop()
updateBroadcastThread.join()
broadcastThread.join()
recordThread.join()
settingsThread.join()
with open('%s/%s'%(DATADR,'end_port_read'),'w') as f:
f.write('')
# Read in last trial setting.
self.read_this_setting()
if verbose:print("Saving GPR.")
dill.dump({'gprmodel':gprmodel,'performance':performance,
'pause':self.pause,'unpause':self.unpause,
'trialStartTimes':self.trialStartTimes,
'trialEndTimes':self.trialEndTimes,
'rotAngle':rotAngle},
open('%s/%s'%(DATADR,'gpr.p'),'wb'),-1)
# Give time for UE4 to finish saving files.
time.sleep(10)
# Move all files into the left or right directory given by which hand the subject was using.
if not os.path.isdir(handedness):
os.mkdir(handedness)
for f in os.listdir('./'):
if os.path.isfile(f) or f=='capture':
os.rename(f,'%s/%s'%(handedness,f))
def stop(self):
"""Stop all thread that could be running. This does not wait for threads to stop."""
self.updateBroadcastEvent.set()
self.broadcast.stopEvent.set()
self.endEvent.set()
# end HandSyncExperiment
def fetch_matching_avatar_vel(avatar,t,t0=None,verbose=False):
"""
Get the stretch of avatar velocities that aligns with the velocity data of the subject.
Parameters
----------
avatar : Interpolation
This would be the templateTrial loaded in VRTrial.
t : array of floats or datetime objects
Stretch of time to return data from. If t0 is specified, this needs to be datetime objects.
t0 : datetime,None
verbose : bool,False
Returns
-------
v : ndarray
(n_time,3). Avatar's velocity that matches given time stamps relative to the starting time
t0.
"""
if not t0 is None:
# Transform dt to time in seconds.
t = np.array([i.total_seconds() for i in t-t0])
assert (t>=0).all()
if verbose:
print("Getting avatar times between %1.1fs and %1.1fs."%(t[0],t[-1]))
# Return part of avatar's trajectory that agrees with the stipulated time bounds.
return avatar(t)
def remove_pause_intervals(t,pause_intervals,return_removed_ix=False):
"""
Given a list of time points where data was taken and a list of tuples where the data take was paused,
return the times at which the data would've been taken if there had been no pause having removed all data
points that were taken during the specified pause intervals.
Parameters
----------
t : list
datetime.datetime objects of when data was recorded. These should be ordered in time.
pause_intervals : list of tuples
Each tuple should be (start,end).
return_removed_ix : bool,False
If True, return the indices of all the entries in t that were removed.
Returns
-------
tDate : list of datetime.datetime objects
t : ndarray
Time is seconds starting from tDate[0]
removedIx : list
Indices of elements removed from t.
"""
t = t[:]
pause_intervals = pause_intervals[:]
removedIx=[]
rangeT=list(range(len(t)))
for dtix,(t0,t1) in enumerate(pause_intervals):
assert t0<t1
dt = t1-t0
# Count up to the beginning of the pause interval.
counter = 0
t_ = t[counter]
while t_<t0 and counter<len(t):
t_ = t[counter]
counter += 1
# Remove all data points within the pause interval.
if counter>0:
while t[counter-1] < t1:
t.pop(counter-1)
removedIx.append(rangeT.pop(counter-1))
# Subtract the duration of the removed pause interval from the remaining data.
if counter<len(t):
for counter in range(counter-1,len(t)):
t[counter] -= dt
for dtix in range(dtix+1,len(pause_intervals)):
pause_intervals[dtix] = (pause_intervals[dtix][0]-dt,pause_intervals[dtix][1]-dt)
if return_removed_ix:
return t,np.concatenate([[0],np.cumsum([i.total_seconds() for i in np.diff(t)])]),removedIx
return t,np.concatenate([[0],np.cumsum([i.total_seconds() for i in np.diff(t)])])
def extract_rot_angle(v,noise_threshold=.4,min_points=10):
"""
Take average normalized vector and use that to calculate rotation angle of vector. There can be a set of
velocities for forward and then backwards movement that are both used to get a better approximation of the
direction of motion Rotation angle is along direction of initial movement.
This needs to be negated to get the angle that we need to rotate about the z-axis to get the vector to
point along the x-axis.
Parameters
----------
v : ndarray
2d velocity measurements. (n_samples,2)
noise_threshold : float,0.4
Allowed noise in fluctuation of angle amongst given time points. If it is too
large, an error is thrown.
Returns
-------
rotAngle : float
Angle of initial velocity.
"""
from misc.angle import mod_angle
assert len(v)>min_points
vnorm = np.linalg.norm(v,axis=1)[:,None]
assert (vnorm>0).all(),"Zero velocities not allowed."
v = v/vnorm
# Orient velocities such that velocity vectors when hands are moving back are facing
# in the same direction as when moving forwards.
angle = np.arctan2(v[:,1],v[:,0])
ix = np.abs(mod_angle(angle[0]-angle)) > (.5*np.pi)
assert ix.any(), "Failed to get both forward and backward directions."
assert np.diff(ix).sum()==1, "All vectors should point in same direction before and after switch in direction."
# Check noise by looking at spread of angle.
v[ix] = rotate_xy(v[ix],np.pi)
angle = np.arctan2(v[:,1],v[:,0])
assert mod_angle(angle[0]-angle[1:]).std()<noise_threshold, "Angle measurements are noisy."
# Calculate final value by averaging across vectors.
v = v.mean(0)
v /= np.linalg.norm(v)
return np.arctan2(v[1],v[0])