-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
48 lines (36 loc) · 2.12 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import time
from edepth import edepth
from utilities import Dataset, Sample
from sklearn.model_selection import train_test_split as trainTestSplit
import pandas as pd
# datasetDir = os.path.join(os.getcwd(), 'dataset/')
checkpointDir = os.path.join(os.getcwd(), 'checkpoints/')
inputDir = os.path.join(os.getcwd(), 'input/')
outputDir = os.path.join(os.getcwd(), 'output/')
# dataframe = pd.read_csv(datasetDir)
# train, validate = trainTestSplit(dataframe, test_size=0.2, random_state=42)
# trainset = Dataset(train, 224, 224)
# validationset = Dataset(validate, 224, 224)
inputs = Sample(inputDir)
growthRate = 32
neurons = 512
model = edepth(growthRate=growthRate, neurons=neurons)
if __name__ == "__main__":
# model.etrain(trainset=trainset, validationset=validationset, epochs=1000, batchSize=16, earlyStoppingPatience=100, gradientClip=2.0, checkpointPath=checkpointDir)
model.eload(os.path.join(checkpointDir, 'ep-96-val-0.27274127925435704.pt'))
# model.egenerate(source='live', outputDir=outputDir, outputFilename=102987810836401830811438, resize=(224, 224), show=True, save=True, colormap='grayscale')
# model.egenerate(source='video', inputFilePath='/home/ehsanasgharzde/Desktop/Projects/edepth/input/18839247834792849281913.mp4', outputDir=outputDir, outputFilename=18839247834792849281913, resize=(224, 224), show=True, save=True, colormap='grayscale')
totalSec, totalImg = 0, 0
for index, imagePath in enumerate(inputs):
if imagePath.replace("\\", "/").split("/")[-1].split(".")[-1] != 'jpg':
continue
imageName = imagePath.replace("\\", "/").split("/")[-1].split(".")[0]
print(index, "- Processing", imageName, end=" - ")
startTime = time.monotonic()
model.egenerate(source='image', inputFilePath=imagePath, outputDir=outputDir, outputFilename=imageName, resize=(224, 224), save=True, colormap='grayscale')
endTime = time.monotonic()
totalSec += endTime - startTime
totalImg += 1
print("Process finished in", endTime - startTime, "seconds.")
print(f"\nGenerated total {totalImg} images in {totalSec} seconds.")