_NDArray_1 = NDArray . var ( "X" ) \n",
- "assume_dtype ( _NDArray_1 , DType . float64 ) \n",
- "assume_shape ( _NDArray_1 , TupleInt ( Int ( 1000000 )) + TupleInt ( Int ( 20 ))) \n",
- "assume_isfinite ( _NDArray_1 ) \n",
- "_NDArray_2 = NDArray . var ( "y" ) \n",
- "assume_dtype ( _NDArray_2 , DType . int64 ) \n",
- "assume_shape ( _NDArray_2 , TupleInt ( Int ( 1000000 ))) \n",
- "assume_value_one_of ( _NDArray_2 , TupleValue ( Value . int ( Int ( 0 ))) + TupleValue ( Value . int ( Int ( 1 )))) \n",
- "_NDArray_3 = asarray ( reshape ( asarray ( _NDArray_2 ), TupleInt ( Int ( - 1 )))) \n",
- "_NDArray_4 = astype ( unique_counts ( _NDArray_3 )[ Int ( 1 )], asarray ( _NDArray_1 ) . dtype ) / NDArray . scalar ( Value . float ( Float ( 1000000.0 ))) \n",
- "_NDArray_5 = zeros ( \n",
- " TupleInt ( unique_inverse ( _NDArray_3 )[ Int ( 0 )] . shape [ Int ( 0 )]) + TupleInt ( asarray ( _NDArray_1 ) . shape [ Int ( 1 )]), \n",
- " OptionalDType . some ( asarray ( _NDArray_1 ) . dtype ), \n",
- " OptionalDevice . some ( asarray ( _NDArray_1 ) . device ), \n",
- ") \n",
- "_MultiAxisIndexKey_1 = MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ())) \n",
- "_IndexKey_1 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 0 ))) + _MultiAxisIndexKey_1 ) \n",
- "_OptionalIntOrTuple_1 = OptionalIntOrTuple . some ( IntOrTuple . int ( Int ( 0 ))) \n",
- "_NDArray_5 [ _IndexKey_1 ] = mean ( asarray ( _NDArray_1 )[ ndarray_index ( unique_inverse ( _NDArray_3 )[ Int ( 1 )] == NDArray . scalar ( Value . int ( Int ( 0 ))))], _OptionalIntOrTuple_1 ) \n",
- "_IndexKey_2 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 1 ))) + _MultiAxisIndexKey_1 ) \n",
- "_NDArray_5 [ _IndexKey_2 ] = mean ( asarray ( _NDArray_1 )[ ndarray_index ( unique_inverse ( _NDArray_3 )[ Int ( 1 )] == NDArray . scalar ( Value . int ( Int ( 1 ))))], _OptionalIntOrTuple_1 ) \n",
- "_NDArray_6 = unique_values ( concat ( TupleNDArray ( unique_values ( asarray ( _NDArray_3 ))))) \n",
- "_NDArray_7 = concat ( \n",
- " TupleNDArray ( asarray ( _NDArray_1 )[ ndarray_index ( _NDArray_3 == _NDArray_6 [ IndexKey . int ( Int ( 0 ))])] - _NDArray_5 [ _IndexKey_1 ]) \n",
- " + TupleNDArray ( asarray ( _NDArray_1 )[ ndarray_index ( _NDArray_3 == _NDArray_6 [ IndexKey . int ( Int ( 1 ))])] - _NDArray_5 [ _IndexKey_2 ]), \n",
- " OptionalInt . some ( Int ( 0 )), \n",
- ") \n",
- "_NDArray_8 = std ( _NDArray_7 , _OptionalIntOrTuple_1 ) \n",
- "_NDArray_8 [ ndarray_index ( std ( _NDArray_7 , _OptionalIntOrTuple_1 ) == NDArray . scalar ( Value . int ( Int ( 0 ))))] = NDArray . scalar ( Value . float ( Float ( 1.0 ))) \n",
- "_TupleNDArray_1 = svd ( \n",
- " sqrt ( asarray ( NDArray . scalar ( Value . float ( Float ( 1.0 ) / Float . from_int ( asarray ( _NDArray_1 ) . shape [ Int ( 0 )] - _NDArray_6 . shape [ Int ( 0 )]))))) * ( _NDArray_7 / _NDArray_8 ), FALSE \n",
- ") \n",
- "_Slice_1 = Slice ( OptionalInt . none , OptionalInt . some ( sum ( astype ( _TupleNDArray_1 [ Int ( 1 )] > NDArray . scalar ( Value . float ( Float ( 0.0001 ))), DType . int32 )) . to_value () . to_int )) \n",
- "_NDArray_9 = ( _TupleNDArray_1 [ Int ( 2 )][ IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( _Slice_1 )) + _MultiAxisIndexKey_1 )] / _NDArray_8 ) . T / _TupleNDArray_1 [ \n",
- " Int ( 1 ) \n",
- "][ IndexKey . slice ( _Slice_1 )] \n",
- "_TupleNDArray_2 = svd ( \n",
- " ( \n",
- " sqrt ( \n",
- " ( NDArray . scalar ( Value . int ( asarray ( _NDArray_1 ) . shape [ Int ( 0 )])) * _NDArray_4 ) \n",
- " * NDArray . scalar ( Value . float ( Float ( 1.0 ) / Float . from_int ( _NDArray_6 . shape [ Int ( 0 )] - Int ( 1 )))) \n",
- " ) \n",
- " * ( _NDArray_5 - ( _NDArray_4 @ _NDArray_5 )) . T \n",
- " ) . T \n",
- " @ _NDArray_9 , \n",
- " FALSE , \n",
- ") \n",
- "( \n",
- " ( asarray ( _NDArray_1 ) - ( _NDArray_4 @ _NDArray_5 )) \n",
- " @ ( \n",
- " _NDArray_9 \n",
- " @ _TupleNDArray_2 [ Int ( 2 )] . T [ \n",
- " IndexKey . multi_axis ( \n",
- " _MultiAxisIndexKey_1 \n",
- " + MultiAxisIndexKey ( \n",
- " MultiAxisIndexKeyItem . slice ( \n",
- " Slice ( \n",
- " OptionalInt . none , \n",
- " OptionalInt . some ( \n",
- " sum ( astype ( _TupleNDArray_2 [ Int ( 1 )] > ( NDArray . scalar ( Value . float ( Float ( 0.0001 ))) * _TupleNDArray_2 [ Int ( 1 )][ IndexKey . int ( Int ( 0 ))]), DType . int32 )) \n",
- " . to_value () \n",
- " . to_int \n",
- " ), \n",
- " ) \n",
- " ) \n",
- " ) \n",
- " ) \n",
- " ] \n",
- " ) \n",
- ")[ IndexKey . multi_axis ( _MultiAxisIndexKey_1 + MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ( OptionalInt . none , OptionalInt . some ( _NDArray_6 . shape [ Int ( 0 )] - Int ( 1 ))))))] \n",
- " \n"
- ],
- "text/latex": [
- "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{X}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}isfinite}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{y}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int64}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}value\\PYZus{}one\\PYZus{}of}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{=} \\PY{n}{asarray}\\PY{p}{(}\\PY{n}{reshape}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{)}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{o}{\\PYZhy{}}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{=} \\PY{n}{astype}\\PY{p}{(}\\PY{n}{unique\\PYZus{}counts}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{dtype}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1000000.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{=} \\PY{n}{zeros}\\PY{p}{(}\n",
- " \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,}\n",
- " \\PY{n}{OptionalDType}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{dtype}\\PY{p}{)}\\PY{p}{,}\n",
- " \\PY{n}{OptionalDevice}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{device}\\PY{p}{)}\\PY{p}{,}\n",
- "\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1} \\PY{o}{=} \\PY{n}{OptionalIntOrTuple}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{IntOrTuple}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]} \\PY{o}{=} \\PY{n}{mean}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]} \\PY{o}{=} \\PY{n}{mean}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}6} \\PY{o}{=} \\PY{n}{unique\\PYZus{}values}\\PY{p}{(}\\PY{n}{concat}\\PY{p}{(}\\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{unique\\PYZus{}values}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{=} \\PY{n}{concat}\\PY{p}{(}\n",
- " \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{==} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]}\\PY{p}{)}\n",
- " \\PY{o}{+} \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{==} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,}\n",
- " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,}\n",
- "\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}8} \\PY{o}{=} \\PY{n}{std}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{std}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\n",
- " \\PY{n}{sqrt}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)} \\PY{o}{/} \\PY{n}{Float}\\PY{o}{.}\\PY{n}{from\\PYZus{}int}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{p}{)}\\PY{p}{,} \\PY{n}{FALSE}\n",
- "\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}Slice\\PYZus{}1} \\PY{o}{=} \\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}int}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}9} \\PY{o}{=} \\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{/} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\n",
- " \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\n",
- "\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{]}\n",
- "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\n",
- " \\PY{p}{(}\n",
- " \\PY{n}{sqrt}\\PY{p}{(}\n",
- " \\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\n",
- " \\PY{o}{*} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)} \\PY{o}{/} \\PY{n}{Float}\\PY{o}{.}\\PY{n}{from\\PYZus{}int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T}\n",
- " \\PY{p}{)}\\PY{o}{.}\\PY{n}{T}\n",
- " \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}9}\\PY{p}{,}\n",
- " \\PY{n}{FALSE}\\PY{p}{,}\n",
- "\\PY{p}{)}\n",
- "\\PY{p}{(}\n",
- " \\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{)}\\PY{p}{)}\n",
- " \\PY{o}{@} \\PY{p}{(}\n",
- " \\PY{n}{\\PYZus{}NDArray\\PYZus{}9}\n",
- " \\PY{o}{@} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{o}{.}\\PY{n}{T}\\PY{p}{[}\n",
- " \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\n",
- " \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\n",
- " \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\n",
- " \\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\n",
- " \\PY{n}{Slice}\\PY{p}{(}\n",
- " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,}\n",
- " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\n",
- " \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\n",
- " \\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\n",
- " \\PY{o}{.}\\PY{n}{to\\PYZus{}int}\n",
- " \\PY{p}{)}\\PY{p}{,}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{]}\n",
- " \\PY{p}{)}\n",
- "\\PY{p}{)}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
- "\\end{Verbatim}\n"
- ],
- "text/plain": [
- "_NDArray_1 = NDArray.var(\"X\")\n",
- "assume_dtype(_NDArray_1, DType.float64)\n",
- "assume_shape(_NDArray_1, TupleInt(Int(1000000)) + TupleInt(Int(20)))\n",
- "assume_isfinite(_NDArray_1)\n",
- "_NDArray_2 = NDArray.var(\"y\")\n",
- "assume_dtype(_NDArray_2, DType.int64)\n",
- "assume_shape(_NDArray_2, TupleInt(Int(1000000)))\n",
- "assume_value_one_of(_NDArray_2, TupleValue(Value.int(Int(0))) + TupleValue(Value.int(Int(1))))\n",
- "_NDArray_3 = asarray(reshape(asarray(_NDArray_2), TupleInt(Int(-1))))\n",
- "_NDArray_4 = astype(unique_counts(_NDArray_3)[Int(1)], asarray(_NDArray_1).dtype) / NDArray.scalar(Value.float(Float(1000000.0)))\n",
- "_NDArray_5 = zeros(\n",
- " TupleInt(unique_inverse(_NDArray_3)[Int(0)].shape[Int(0)]) + TupleInt(asarray(_NDArray_1).shape[Int(1)]),\n",
- " OptionalDType.some(asarray(_NDArray_1).dtype),\n",
- " OptionalDevice.some(asarray(_NDArray_1).device),\n",
- ")\n",
- "_MultiAxisIndexKey_1 = MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice()))\n",
- "_IndexKey_1 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(0))) + _MultiAxisIndexKey_1)\n",
- "_OptionalIntOrTuple_1 = OptionalIntOrTuple.some(IntOrTuple.int(Int(0)))\n",
- "_NDArray_5[_IndexKey_1] = mean(asarray(_NDArray_1)[ndarray_index(unique_inverse(_NDArray_3)[Int(1)] == NDArray.scalar(Value.int(Int(0))))], _OptionalIntOrTuple_1)\n",
- "_IndexKey_2 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(1))) + _MultiAxisIndexKey_1)\n",
- "_NDArray_5[_IndexKey_2] = mean(asarray(_NDArray_1)[ndarray_index(unique_inverse(_NDArray_3)[Int(1)] == NDArray.scalar(Value.int(Int(1))))], _OptionalIntOrTuple_1)\n",
- "_NDArray_6 = unique_values(concat(TupleNDArray(unique_values(asarray(_NDArray_3)))))\n",
- "_NDArray_7 = concat(\n",
- " TupleNDArray(asarray(_NDArray_1)[ndarray_index(_NDArray_3 == _NDArray_6[IndexKey.int(Int(0))])] - _NDArray_5[_IndexKey_1])\n",
- " + TupleNDArray(asarray(_NDArray_1)[ndarray_index(_NDArray_3 == _NDArray_6[IndexKey.int(Int(1))])] - _NDArray_5[_IndexKey_2]),\n",
- " OptionalInt.some(Int(0)),\n",
- ")\n",
- "_NDArray_8 = std(_NDArray_7, _OptionalIntOrTuple_1)\n",
- "_NDArray_8[ndarray_index(std(_NDArray_7, _OptionalIntOrTuple_1) == NDArray.scalar(Value.int(Int(0))))] = NDArray.scalar(Value.float(Float(1.0)))\n",
- "_TupleNDArray_1 = svd(\n",
- " sqrt(asarray(NDArray.scalar(Value.float(Float(1.0) / Float.from_int(asarray(_NDArray_1).shape[Int(0)] - _NDArray_6.shape[Int(0)]))))) * (_NDArray_7 / _NDArray_8), FALSE\n",
- ")\n",
- "_Slice_1 = Slice(OptionalInt.none, OptionalInt.some(sum(astype(_TupleNDArray_1[Int(1)] > NDArray.scalar(Value.float(Float(0.0001))), DType.int32)).to_value().to_int))\n",
- "_NDArray_9 = (_TupleNDArray_1[Int(2)][IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(_Slice_1)) + _MultiAxisIndexKey_1)] / _NDArray_8).T / _TupleNDArray_1[\n",
- " Int(1)\n",
- "][IndexKey.slice(_Slice_1)]\n",
- "_TupleNDArray_2 = svd(\n",
- " (\n",
- " sqrt(\n",
- " (NDArray.scalar(Value.int(asarray(_NDArray_1).shape[Int(0)])) * _NDArray_4)\n",
- " * NDArray.scalar(Value.float(Float(1.0) / Float.from_int(_NDArray_6.shape[Int(0)] - Int(1))))\n",
- " )\n",
- " * (_NDArray_5 - (_NDArray_4 @ _NDArray_5)).T\n",
- " ).T\n",
- " @ _NDArray_9,\n",
- " FALSE,\n",
- ")\n",
- "(\n",
- " (asarray(_NDArray_1) - (_NDArray_4 @ _NDArray_5))\n",
- " @ (\n",
- " _NDArray_9\n",
- " @ _TupleNDArray_2[Int(2)].T[\n",
- " IndexKey.multi_axis(\n",
- " _MultiAxisIndexKey_1\n",
- " + MultiAxisIndexKey(\n",
- " MultiAxisIndexKeyItem.slice(\n",
- " Slice(\n",
- " OptionalInt.none,\n",
- " OptionalInt.some(\n",
- " sum(astype(_TupleNDArray_2[Int(1)] > (NDArray.scalar(Value.float(Float(0.0001))) * _TupleNDArray_2[Int(1)][IndexKey.int(Int(0))]), DType.int32))\n",
- " .to_value()\n",
- " .to_int\n",
- " ),\n",
- " )\n",
- " )\n",
- " )\n",
- " )\n",
- " ]\n",
- " )\n",
- ")[IndexKey.multi_axis(_MultiAxisIndexKey_1 + MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice(OptionalInt.none, OptionalInt.some(_NDArray_6.shape[Int(0)] - Int(1))))))]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
+ "data": {
+ "image/svg+xml": [
+ ""
]
+ },
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "cell_type": "markdown",
- "id": "580da17b",
- "metadata": {},
- "source": [
- "We now have extracted out a program which is semantically equivalent to the original call! One thing you might notice\n",
- "is that the expression has more types than customary NumPy code. Every object is lifted into a strongly typed `egglog`\n",
- "class. This is so that when we run optimizations, we know the types of all the objects. It still is compatible with\n",
- "normal Python objects, but they are [converted](type-promotion) when they are passed as argument.\n",
- "\n",
- "## Optimizing our result\n",
- "\n",
- "Now that we have the an expression, we can run our rewrite rules to \"optimize\" it, extracting out the lowest cost\n",
- "(smallest) expression afterword:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "4d3cd4f3",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "_NDArray_1 = NDArray . var ( "X" ) \n",
- "assume_dtype ( _NDArray_1 , DType . float64 ) \n",
- "assume_shape ( _NDArray_1 , TupleInt ( Int ( 1000000 )) + TupleInt ( Int ( 20 ))) \n",
- "assume_isfinite ( _NDArray_1 ) \n",
- "_NDArray_2 = NDArray . var ( "y" ) \n",
- "assume_dtype ( _NDArray_2 , DType . int64 ) \n",
- "assume_shape ( _NDArray_2 , TupleInt ( Int ( 1000000 ))) \n",
- "assume_value_one_of ( _NDArray_2 , TupleValue ( Value . int ( Int ( 0 ))) + TupleValue ( Value . int ( Int ( 1 )))) \n",
- "_NDArray_3 = astype ( unique_counts ( _NDArray_2 )[ Int ( 1 )], DType . float64 ) / NDArray . scalar ( Value . float ( Float ( 1000000.0 ))) \n",
- "_NDArray_4 = zeros ( TupleInt ( Int ( 2 )) + TupleInt ( Int ( 20 )), OptionalDType . some ( DType . float64 ), OptionalDevice . some ( _NDArray_1 . device )) \n",
- "_MultiAxisIndexKey_1 = MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ())) \n",
- "_IndexKey_1 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 0 ))) + _MultiAxisIndexKey_1 ) \n",
- "_OptionalIntOrTuple_1 = OptionalIntOrTuple . some ( IntOrTuple . int ( Int ( 0 ))) \n",
- "_NDArray_4 [ _IndexKey_1 ] = mean ( _NDArray_1 [ ndarray_index ( unique_inverse ( _NDArray_2 )[ Int ( 1 )] == NDArray . scalar ( Value . int ( Int ( 0 ))))], _OptionalIntOrTuple_1 ) \n",
- "_IndexKey_2 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 1 ))) + _MultiAxisIndexKey_1 ) \n",
- "_NDArray_4 [ _IndexKey_2 ] = mean ( _NDArray_1 [ ndarray_index ( unique_inverse ( _NDArray_2 )[ Int ( 1 )] == NDArray . scalar ( Value . int ( Int ( 1 ))))], _OptionalIntOrTuple_1 ) \n",
- "_NDArray_5 = concat ( \n",
- " TupleNDArray ( _NDArray_1 [ ndarray_index ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 0 ))))] - _NDArray_4 [ _IndexKey_1 ]) \n",
- " + TupleNDArray ( _NDArray_1 [ ndarray_index ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 1 ))))] - _NDArray_4 [ _IndexKey_2 ]), \n",
- " OptionalInt . some ( Int ( 0 )), \n",
- ") \n",
- "_NDArray_6 = std ( _NDArray_5 , _OptionalIntOrTuple_1 ) \n",
- "_NDArray_6 [ ndarray_index ( std ( _NDArray_5 , _OptionalIntOrTuple_1 ) == NDArray . scalar ( Value . int ( Int ( 0 ))))] = NDArray . scalar ( Value . float ( Float ( 1.0 ))) \n",
- "_TupleNDArray_1 = svd ( sqrt ( NDArray . scalar ( Value . float ( Float ( 1.0 ) / Float . from_int ( Int ( 999998 ))))) * ( _NDArray_5 / _NDArray_6 ), FALSE ) \n",
- "_Slice_1 = Slice ( OptionalInt . none , OptionalInt . some ( sum ( astype ( _TupleNDArray_1 [ Int ( 1 )] > NDArray . scalar ( Value . float ( Float ( 0.0001 ))), DType . int32 )) . to_value () . to_int )) \n",
- "_NDArray_7 = ( _TupleNDArray_1 [ Int ( 2 )][ IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( _Slice_1 )) + _MultiAxisIndexKey_1 )] / _NDArray_6 ) . T / _TupleNDArray_1 [ \n",
- " Int ( 1 ) \n",
- "][ IndexKey . slice ( _Slice_1 )] \n",
- "_TupleNDArray_2 = svd ( \n",
- " ( sqrt (( NDArray . scalar ( Value . int ( Int ( 1000000 ))) * _NDArray_3 ) * NDArray . scalar ( Value . float ( Float ( 1.0 )))) * ( _NDArray_4 - ( _NDArray_3 @ _NDArray_4 )) . T ) . T @ _NDArray_7 , FALSE \n",
- ") \n",
- "( \n",
- " ( _NDArray_1 - ( _NDArray_3 @ _NDArray_4 )) \n",
- " @ ( \n",
- " _NDArray_7 \n",
- " @ _TupleNDArray_2 [ Int ( 2 )] . T [ \n",
- " IndexKey . multi_axis ( \n",
- " _MultiAxisIndexKey_1 \n",
- " + MultiAxisIndexKey ( \n",
- " MultiAxisIndexKeyItem . slice ( \n",
- " Slice ( \n",
- " OptionalInt . none , \n",
- " OptionalInt . some ( \n",
- " sum ( astype ( _TupleNDArray_2 [ Int ( 1 )] > ( NDArray . scalar ( Value . float ( Float ( 0.0001 ))) * _TupleNDArray_2 [ Int ( 1 )][ IndexKey . int ( Int ( 0 ))]), DType . int32 )) \n",
- " . to_value () \n",
- " . to_int \n",
- " ), \n",
- " ) \n",
- " ) \n",
- " ) \n",
- " ) \n",
- " ] \n",
- " ) \n",
- ")[ IndexKey . multi_axis ( _MultiAxisIndexKey_1 + MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ( OptionalInt . none , OptionalInt . some ( Int ( 1 ))))))] \n",
- " \n"
- ],
- "text/latex": [
- "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{X}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}isfinite}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{y}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int64}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}value\\PYZus{}one\\PYZus{}of}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{=} \\PY{n}{astype}\\PY{p}{(}\\PY{n}{unique\\PYZus{}counts}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1000000.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{=} \\PY{n}{zeros}\\PY{p}{(}\\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalDType}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalDevice}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{o}{.}\\PY{n}{device}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1} \\PY{o}{=} \\PY{n}{OptionalIntOrTuple}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{IntOrTuple}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]} \\PY{o}{=} \\PY{n}{mean}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]} \\PY{o}{=} \\PY{n}{mean}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{=} \\PY{n}{concat}\\PY{p}{(}\n",
- " \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]}\\PY{p}{)}\n",
- " \\PY{o}{+} \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,}\n",
- " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,}\n",
- "\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}6} \\PY{o}{=} \\PY{n}{std}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{std}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\\PY{n}{sqrt}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)} \\PY{o}{/} \\PY{n}{Float}\\PY{o}{.}\\PY{n}{from\\PYZus{}int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{999998}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{)}\\PY{p}{,} \\PY{n}{FALSE}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}Slice\\PYZus{}1} \\PY{o}{=} \\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}int}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{=} \\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{/} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\n",
- " \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\n",
- "\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{]}\n",
- "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\n",
- " \\PY{p}{(}\\PY{n}{sqrt}\\PY{p}{(}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)} \\PY{o}{*} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{p}{,} \\PY{n}{FALSE}\n",
- "\\PY{p}{)}\n",
- "\\PY{p}{(}\n",
- " \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\\PY{p}{)}\n",
- " \\PY{o}{@} \\PY{p}{(}\n",
- " \\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\n",
- " \\PY{o}{@} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{o}{.}\\PY{n}{T}\\PY{p}{[}\n",
- " \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\n",
- " \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\n",
- " \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\n",
- " \\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\n",
- " \\PY{n}{Slice}\\PY{p}{(}\n",
- " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,}\n",
- " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\n",
- " \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\n",
- " \\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\n",
- " \\PY{o}{.}\\PY{n}{to\\PYZus{}int}\n",
- " \\PY{p}{)}\\PY{p}{,}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{]}\n",
- " \\PY{p}{)}\n",
- "\\PY{p}{)}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
- "\\end{Verbatim}\n"
- ],
- "text/plain": [
- "_NDArray_1 = NDArray.var(\"X\")\n",
- "assume_dtype(_NDArray_1, DType.float64)\n",
- "assume_shape(_NDArray_1, TupleInt(Int(1000000)) + TupleInt(Int(20)))\n",
- "assume_isfinite(_NDArray_1)\n",
- "_NDArray_2 = NDArray.var(\"y\")\n",
- "assume_dtype(_NDArray_2, DType.int64)\n",
- "assume_shape(_NDArray_2, TupleInt(Int(1000000)))\n",
- "assume_value_one_of(_NDArray_2, TupleValue(Value.int(Int(0))) + TupleValue(Value.int(Int(1))))\n",
- "_NDArray_3 = astype(unique_counts(_NDArray_2)[Int(1)], DType.float64) / NDArray.scalar(Value.float(Float(1000000.0)))\n",
- "_NDArray_4 = zeros(TupleInt(Int(2)) + TupleInt(Int(20)), OptionalDType.some(DType.float64), OptionalDevice.some(_NDArray_1.device))\n",
- "_MultiAxisIndexKey_1 = MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice()))\n",
- "_IndexKey_1 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(0))) + _MultiAxisIndexKey_1)\n",
- "_OptionalIntOrTuple_1 = OptionalIntOrTuple.some(IntOrTuple.int(Int(0)))\n",
- "_NDArray_4[_IndexKey_1] = mean(_NDArray_1[ndarray_index(unique_inverse(_NDArray_2)[Int(1)] == NDArray.scalar(Value.int(Int(0))))], _OptionalIntOrTuple_1)\n",
- "_IndexKey_2 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(1))) + _MultiAxisIndexKey_1)\n",
- "_NDArray_4[_IndexKey_2] = mean(_NDArray_1[ndarray_index(unique_inverse(_NDArray_2)[Int(1)] == NDArray.scalar(Value.int(Int(1))))], _OptionalIntOrTuple_1)\n",
- "_NDArray_5 = concat(\n",
- " TupleNDArray(_NDArray_1[ndarray_index(_NDArray_2 == NDArray.scalar(Value.int(Int(0))))] - _NDArray_4[_IndexKey_1])\n",
- " + TupleNDArray(_NDArray_1[ndarray_index(_NDArray_2 == NDArray.scalar(Value.int(Int(1))))] - _NDArray_4[_IndexKey_2]),\n",
- " OptionalInt.some(Int(0)),\n",
- ")\n",
- "_NDArray_6 = std(_NDArray_5, _OptionalIntOrTuple_1)\n",
- "_NDArray_6[ndarray_index(std(_NDArray_5, _OptionalIntOrTuple_1) == NDArray.scalar(Value.int(Int(0))))] = NDArray.scalar(Value.float(Float(1.0)))\n",
- "_TupleNDArray_1 = svd(sqrt(NDArray.scalar(Value.float(Float(1.0) / Float.from_int(Int(999998))))) * (_NDArray_5 / _NDArray_6), FALSE)\n",
- "_Slice_1 = Slice(OptionalInt.none, OptionalInt.some(sum(astype(_TupleNDArray_1[Int(1)] > NDArray.scalar(Value.float(Float(0.0001))), DType.int32)).to_value().to_int))\n",
- "_NDArray_7 = (_TupleNDArray_1[Int(2)][IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(_Slice_1)) + _MultiAxisIndexKey_1)] / _NDArray_6).T / _TupleNDArray_1[\n",
- " Int(1)\n",
- "][IndexKey.slice(_Slice_1)]\n",
- "_TupleNDArray_2 = svd(\n",
- " (sqrt((NDArray.scalar(Value.int(Int(1000000))) * _NDArray_3) * NDArray.scalar(Value.float(Float(1.0)))) * (_NDArray_4 - (_NDArray_3 @ _NDArray_4)).T).T @ _NDArray_7, FALSE\n",
- ")\n",
- "(\n",
- " (_NDArray_1 - (_NDArray_3 @ _NDArray_4))\n",
- " @ (\n",
- " _NDArray_7\n",
- " @ _TupleNDArray_2[Int(2)].T[\n",
- " IndexKey.multi_axis(\n",
- " _MultiAxisIndexKey_1\n",
- " + MultiAxisIndexKey(\n",
- " MultiAxisIndexKeyItem.slice(\n",
- " Slice(\n",
- " OptionalInt.none,\n",
- " OptionalInt.some(\n",
- " sum(astype(_TupleNDArray_2[Int(1)] > (NDArray.scalar(Value.float(Float(0.0001))) * _TupleNDArray_2[Int(1)][IndexKey.int(Int(0))]), DType.int32))\n",
- " .to_value()\n",
- " .to_int\n",
- " ),\n",
- " )\n",
- " )\n",
- " )\n",
- " )\n",
- " ]\n",
- " )\n",
- ")[IndexKey.multi_axis(_MultiAxisIndexKey_1 + MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice(OptionalInt.none, OptionalInt.some(Int(1))))))]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
+ "data": {
+ "text/html": [
+ "_NDArray_1 = NDArray . var ( "X" ) \n",
+ "assume_dtype ( _NDArray_1 , DType . float64 ) \n",
+ "assume_shape ( _NDArray_1 , TupleInt ( Int ( 1000000 )) + TupleInt ( Int ( 20 ))) \n",
+ "assume_isfinite ( _NDArray_1 ) \n",
+ "_NDArray_2 = NDArray . var ( "y" ) \n",
+ "assume_dtype ( _NDArray_2 , DType . int64 ) \n",
+ "assume_shape ( _NDArray_2 , TupleInt ( Int ( 1000000 ))) \n",
+ "assume_value_one_of ( _NDArray_2 , TupleValue ( Value . int ( Int ( 0 ))) + TupleValue ( Value . int ( Int ( 1 )))) \n",
+ "_NDArray_3 = asarray ( reshape ( asarray ( _NDArray_2 ), TupleInt ( Int ( - 1 )))) \n",
+ "_NDArray_4 = astype ( unique_counts ( _NDArray_3 )[ Int ( 1 )], asarray ( _NDArray_1 ) . dtype ) / NDArray . scalar ( Value . float ( Float ( 1000000.0 ))) \n",
+ "_NDArray_5 = zeros ( \n",
+ " TupleInt ( unique_inverse ( _NDArray_3 )[ Int ( 0 )] . shape [ Int ( 0 )]) + TupleInt ( asarray ( _NDArray_1 ) . shape [ Int ( 1 )]), \n",
+ " OptionalDType . some ( asarray ( _NDArray_1 ) . dtype ), \n",
+ " OptionalDevice . some ( asarray ( _NDArray_1 ) . device ), \n",
+ ") \n",
+ "_MultiAxisIndexKey_1 = MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ())) \n",
+ "_IndexKey_1 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 0 ))) + _MultiAxisIndexKey_1 ) \n",
+ "_OptionalIntOrTuple_1 = OptionalIntOrTuple . some ( IntOrTuple . int ( Int ( 0 ))) \n",
+ "_NDArray_5 [ _IndexKey_1 ] = mean ( asarray ( _NDArray_1 )[ ndarray_index ( unique_inverse ( _NDArray_3 )[ Int ( 1 )] == NDArray . scalar ( Value . int ( Int ( 0 ))))], _OptionalIntOrTuple_1 ) \n",
+ "_IndexKey_2 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 1 ))) + _MultiAxisIndexKey_1 ) \n",
+ "_NDArray_5 [ _IndexKey_2 ] = mean ( asarray ( _NDArray_1 )[ ndarray_index ( unique_inverse ( _NDArray_3 )[ Int ( 1 )] == NDArray . scalar ( Value . int ( Int ( 1 ))))], _OptionalIntOrTuple_1 ) \n",
+ "_NDArray_6 = unique_values ( concat ( TupleNDArray ( unique_values ( asarray ( _NDArray_3 ))))) \n",
+ "_NDArray_7 = concat ( \n",
+ " TupleNDArray ( asarray ( _NDArray_1 )[ ndarray_index ( _NDArray_3 == _NDArray_6 [ IndexKey . int ( Int ( 0 ))])] - _NDArray_5 [ _IndexKey_1 ]) \n",
+ " + TupleNDArray ( asarray ( _NDArray_1 )[ ndarray_index ( _NDArray_3 == _NDArray_6 [ IndexKey . int ( Int ( 1 ))])] - _NDArray_5 [ _IndexKey_2 ]), \n",
+ " OptionalInt . some ( Int ( 0 )), \n",
+ ") \n",
+ "_NDArray_8 = std ( _NDArray_7 , _OptionalIntOrTuple_1 ) \n",
+ "_NDArray_8 [ ndarray_index ( std ( _NDArray_7 , _OptionalIntOrTuple_1 ) == NDArray . scalar ( Value . int ( Int ( 0 ))))] = NDArray . scalar ( Value . float ( Float ( 1.0 ))) \n",
+ "_TupleNDArray_1 = svd ( \n",
+ " sqrt ( asarray ( NDArray . scalar ( Value . float ( Float ( 1.0 ) / Float . from_int ( asarray ( _NDArray_1 ) . shape [ Int ( 0 )] - _NDArray_6 . shape [ Int ( 0 )]))))) * ( _NDArray_7 / _NDArray_8 ), FALSE \n",
+ ") \n",
+ "_Slice_1 = Slice ( OptionalInt . none , OptionalInt . some ( sum ( astype ( _TupleNDArray_1 [ Int ( 1 )] > NDArray . scalar ( Value . float ( Float ( 0.0001 ))), DType . int32 )) . to_value () . to_int )) \n",
+ "_NDArray_9 = ( _TupleNDArray_1 [ Int ( 2 )][ IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( _Slice_1 )) + _MultiAxisIndexKey_1 )] / _NDArray_8 ) . T / _TupleNDArray_1 [ \n",
+ " Int ( 1 ) \n",
+ "][ IndexKey . slice ( _Slice_1 )] \n",
+ "_TupleNDArray_2 = svd ( \n",
+ " ( \n",
+ " sqrt ( \n",
+ " ( NDArray . scalar ( Value . int ( asarray ( _NDArray_1 ) . shape [ Int ( 0 )])) * _NDArray_4 ) \n",
+ " * NDArray . scalar ( Value . float ( Float ( 1.0 ) / Float . from_int ( _NDArray_6 . shape [ Int ( 0 )] - Int ( 1 )))) \n",
+ " ) \n",
+ " * ( _NDArray_5 - ( _NDArray_4 @ _NDArray_5 )) . T \n",
+ " ) . T \n",
+ " @ _NDArray_9 , \n",
+ " FALSE , \n",
+ ") \n",
+ "( \n",
+ " ( asarray ( _NDArray_1 ) - ( _NDArray_4 @ _NDArray_5 )) \n",
+ " @ ( \n",
+ " _NDArray_9 \n",
+ " @ _TupleNDArray_2 [ Int ( 2 )] . T [ \n",
+ " IndexKey . multi_axis ( \n",
+ " _MultiAxisIndexKey_1 \n",
+ " + MultiAxisIndexKey ( \n",
+ " MultiAxisIndexKeyItem . slice ( \n",
+ " Slice ( \n",
+ " OptionalInt . none , \n",
+ " OptionalInt . some ( \n",
+ " sum ( astype ( _TupleNDArray_2 [ Int ( 1 )] > ( NDArray . scalar ( Value . float ( Float ( 0.0001 ))) * _TupleNDArray_2 [ Int ( 1 )][ IndexKey . int ( Int ( 0 ))]), DType . int32 )) \n",
+ " . to_value () \n",
+ " . to_int \n",
+ " ), \n",
+ " ) \n",
+ " ) \n",
+ " ) \n",
+ " ) \n",
+ " ] \n",
+ " ) \n",
+ ")[ IndexKey . multi_axis ( _MultiAxisIndexKey_1 + MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ( OptionalInt . none , OptionalInt . some ( _NDArray_6 . shape [ Int ( 0 )] - Int ( 1 ))))))] \n",
+ " \n"
],
- "source": [
- "egraph = EGraph([array_api_module])\n",
- "egraph.register(X_r2)\n",
- "egraph.run(10000)\n",
- "X_r2_optimized = egraph.extract(X_r2)\n",
- "X_r2_optimized"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "30ea4ea4",
- "metadata": {},
- "source": [
- "We see that for example expressions that referenced the shape of our input arrays have been resolved to their\n",
- "values.\n",
- "\n",
- "We can also take a look at the e-graph itself, even though it's quite large, where we can see that equivalent\n",
- "expressions show up in the same group, or \"e-class\":\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "6417b9e5",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/svg+xml": [
- "\n",
- "\n",
- " \n",
- "\n",
- "outer_cluster_32 \n",
- " \n",
- "\n",
- "cluster_32 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_48 \n",
- " \n",
- "\n",
- "cluster_48 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_92 \n",
- " \n",
- "\n",
- "cluster_92 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_155 \n",
- " \n",
- "\n",
- "cluster_155 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_34 \n",
- " \n",
- "\n",
- "cluster_34 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_91 \n",
- " \n",
- "\n",
- "cluster_91 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_72 \n",
- " \n",
- "\n",
- "cluster_72 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_190 \n",
- " \n",
- "\n",
- "cluster_190 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_147 \n",
- " \n",
- "\n",
- "cluster_147 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_58 \n",
- " \n",
- "\n",
- "cluster_58 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_62 \n",
- " \n",
- "\n",
- "cluster_62 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_143 \n",
- " \n",
- "\n",
- "cluster_143 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_75 \n",
- " \n",
- "\n",
- "cluster_75 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_118 \n",
- " \n",
- "\n",
- "cluster_118 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_105 \n",
- " \n",
- "\n",
- "cluster_105 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_71 \n",
- " \n",
- "\n",
- "cluster_71 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_141 \n",
- " \n",
- "\n",
- "cluster_141 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_142 \n",
- " \n",
- "\n",
- "cluster_142 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_52 \n",
- " \n",
- "\n",
- "cluster_52 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_56 \n",
- " \n",
- "\n",
- "cluster_56 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_188 \n",
- " \n",
- "\n",
- "cluster_188 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_69 \n",
- " \n",
- "\n",
- "cluster_69 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_178 \n",
- " \n",
- "\n",
- "cluster_178 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_140 \n",
- " \n",
- "\n",
- "cluster_140 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_187 \n",
- " \n",
- "\n",
- "cluster_187 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_95 \n",
- " \n",
- "\n",
- "cluster_95 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_12 \n",
- " \n",
- "\n",
- "cluster_12 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_102 \n",
- " \n",
- "\n",
- "cluster_102 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_67 \n",
- " \n",
- "\n",
- "cluster_67 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_115 \n",
- " \n",
- "\n",
- "cluster_115 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_63 \n",
- " \n",
- "\n",
- "cluster_63 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_127 \n",
- " \n",
- "\n",
- "cluster_127 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_146 \n",
- " \n",
- "\n",
- "cluster_146 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_109 \n",
- " \n",
- "\n",
- "cluster_109 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_191 \n",
- " \n",
- "\n",
- "cluster_191 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_37 \n",
- " \n",
- "\n",
- "cluster_37 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_79 \n",
- " \n",
- "\n",
- "cluster_79 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_122 \n",
- " \n",
- "\n",
- "cluster_122 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_163 \n",
- " \n",
- "\n",
- "cluster_163 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_145 \n",
- " \n",
- "\n",
- "cluster_145 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_106 \n",
- " \n",
- "\n",
- "cluster_106 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_2 \n",
- " \n",
- "\n",
- "cluster_2 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_149 \n",
- " \n",
- "\n",
- "cluster_149 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_126 \n",
- " \n",
- "\n",
- "cluster_126 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_110 \n",
- " \n",
- "\n",
- "cluster_110 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_131 \n",
- " \n",
- "\n",
- "cluster_131 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_171 \n",
- " \n",
- "\n",
- "cluster_171 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_99 \n",
- " \n",
- "\n",
- "cluster_99 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_135 \n",
- " \n",
- "\n",
- "cluster_135 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_182 \n",
- " \n",
- "\n",
- "cluster_182 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_8 \n",
- " \n",
- "\n",
- "cluster_8 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_78 \n",
- " \n",
- "\n",
- "cluster_78 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_167 \n",
- " \n",
- "\n",
- "cluster_167 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_172 \n",
- " \n",
- "\n",
- "cluster_172 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_169 \n",
- " \n",
- "\n",
- "cluster_169 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_36 \n",
- " \n",
- "\n",
- "cluster_36 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_76 \n",
- " \n",
- "\n",
- "cluster_76 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_61 \n",
- " \n",
- "\n",
- "cluster_61 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_157 \n",
- " \n",
- "\n",
- "cluster_157 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_173 \n",
- " \n",
- "\n",
- "cluster_173 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_164 \n",
- " \n",
- "\n",
- "cluster_164 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_33 \n",
- " \n",
- "\n",
- "cluster_33 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_83 \n",
- " \n",
- "\n",
- "cluster_83 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_116 \n",
- " \n",
- "\n",
- "cluster_116 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_168 \n",
- " \n",
- "\n",
- "cluster_168 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_100 \n",
- " \n",
- "\n",
- "cluster_100 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_108 \n",
- " \n",
- "\n",
- "cluster_108 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_181 \n",
- " \n",
- "\n",
- "cluster_181 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_90 \n",
- " \n",
- "\n",
- "cluster_90 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_153 \n",
- " \n",
- "\n",
- "cluster_153 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_175 \n",
- " \n",
- "\n",
- "cluster_175 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_137 \n",
- " \n",
- "\n",
- "cluster_137 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_89 \n",
- " \n",
- "\n",
- "cluster_89 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_82 \n",
- " \n",
- "\n",
- "cluster_82 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_44 \n",
- " \n",
- "\n",
- "cluster_44 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_180 \n",
- " \n",
- "\n",
- "cluster_180 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_189 \n",
- " \n",
- "\n",
- "cluster_189 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_179 \n",
- " \n",
- "\n",
- "cluster_179 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_70 \n",
- " \n",
- "\n",
- "cluster_70 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_57 \n",
- " \n",
- "\n",
- "cluster_57 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_121 \n",
- " \n",
- "\n",
- "cluster_121 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_31 \n",
- " \n",
- "\n",
- "cluster_31 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_123 \n",
- " \n",
- "\n",
- "cluster_123 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_68 \n",
- " \n",
- "\n",
- "cluster_68 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_50 \n",
- " \n",
- "\n",
- "cluster_50 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_151 \n",
- " \n",
- "\n",
- "cluster_151 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_77 \n",
- " \n",
- "\n",
- "cluster_77 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_74 \n",
- " \n",
- "\n",
- "cluster_74 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_101 \n",
- " \n",
- "\n",
- "cluster_101 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_152 \n",
- " \n",
- "\n",
- "cluster_152 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_130 \n",
- " \n",
- "\n",
- "cluster_130 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_161 \n",
- " \n",
- "\n",
- "cluster_161 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_148 \n",
- " \n",
- "\n",
- "cluster_148 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_80 \n",
- " \n",
- "\n",
- "cluster_80 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_111 \n",
- " \n",
- "\n",
- "cluster_111 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_183 \n",
- " \n",
- "\n",
- "cluster_183 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_59 \n",
- " \n",
- "\n",
- "cluster_59 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_159 \n",
- " \n",
- "\n",
- "cluster_159 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_103 \n",
- " \n",
- "\n",
- "cluster_103 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_117 \n",
- " \n",
- "\n",
- "cluster_117 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_158 \n",
- " \n",
- "\n",
- "cluster_158 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_87 \n",
- " \n",
- "\n",
- "cluster_87 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_96 \n",
- " \n",
- "\n",
- "cluster_96 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_98 \n",
- " \n",
- "\n",
- "cluster_98 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_166 \n",
- " \n",
- "\n",
- "cluster_166 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_133 \n",
- " \n",
- "\n",
- "cluster_133 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_184 \n",
- " \n",
- "\n",
- "cluster_184 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_107 \n",
- " \n",
- "\n",
- "cluster_107 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_162 \n",
- " \n",
- "\n",
- "cluster_162 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_144 \n",
- " \n",
- "\n",
- "cluster_144 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_170 \n",
- " \n",
- "\n",
- "cluster_170 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_160 \n",
- " \n",
- "\n",
- "cluster_160 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_16 \n",
- " \n",
- "\n",
- "cluster_16 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_47 \n",
- " \n",
- "\n",
- "cluster_47 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_49 \n",
- " \n",
- "\n",
- "cluster_49 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_138 \n",
- " \n",
- "\n",
- "cluster_138 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_185 \n",
- " \n",
- "\n",
- "cluster_185 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_176 \n",
- " \n",
- "\n",
- "cluster_176 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_65 \n",
- " \n",
- "\n",
- "cluster_65 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_Int_to_py-7586556743040283621-value \n",
- " \n",
- "\n",
- "cluster_Int_to_py-7586556743040283621-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_Int_to_py-11951456526892775522-value \n",
- " \n",
- "\n",
- "cluster_Int_to_py-11951456526892775522-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_Int_to_py-6079675520328773069-value \n",
- " \n",
- "\n",
- "cluster_Int_to_py-6079675520328773069-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_Int_to_py-103947256882385308-value \n",
- " \n",
- "\n",
- "cluster_Int_to_py-103947256882385308-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_Int_to_py-5092353580987650850-value \n",
- " \n",
- "\n",
- "cluster_Int_to_py-5092353580987650850-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_Int_to_py-1870696621799859130-value \n",
- " \n",
- "\n",
- "cluster_Int_to_py-1870696621799859130-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_Boolean_to_py-155920885323577962-value \n",
- " \n",
- "\n",
- "cluster_Boolean_to_py-155920885323577962-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_Int_to_py-12938778466233897741-value \n",
- " \n",
- "\n",
- "cluster_Int_to_py-12938778466233897741-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_139 \n",
- " \n",
- "\n",
- "cluster_139 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_177 \n",
- " \n",
- "\n",
- "cluster_177 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_186 \n",
- " \n",
- "\n",
- "cluster_186 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_43 \n",
- " \n",
- "\n",
- "cluster_43 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_203 \n",
- " \n",
- "\n",
- "cluster_203 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_46 \n",
- " \n",
- "\n",
- "cluster_46 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_212 \n",
- " \n",
- "\n",
- "cluster_212 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_42 \n",
- " \n",
- "\n",
- "cluster_42 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_45 \n",
- " \n",
- "\n",
- "cluster_45 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_38 \n",
- " \n",
- "\n",
- "cluster_38 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_104 \n",
- " \n",
- "\n",
- "cluster_104 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_112 \n",
- " \n",
- "\n",
- "cluster_112 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_113 \n",
- " \n",
- "\n",
- "cluster_113 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_165 \n",
- " \n",
- "\n",
- "cluster_165 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_85 \n",
- " \n",
- "\n",
- "cluster_85 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_124 \n",
- " \n",
- "\n",
- "cluster_124 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_30 \n",
- " \n",
- "\n",
- "cluster_30 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_19 \n",
- " \n",
- "\n",
- "cluster_19 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_201 \n",
- " \n",
- "\n",
- "cluster_201 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_198 \n",
- " \n",
- "\n",
- "cluster_198 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_22 \n",
- " \n",
- "\n",
- "cluster_22 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_greater_zero-1143242824664700181-value \n",
- " \n",
- "\n",
- "cluster_greater_zero-1143242824664700181-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_greater_zero-13770179520251441998-value \n",
- " \n",
- "\n",
- "cluster_greater_zero-13770179520251441998-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_greater_zero-14757501459592564217-value \n",
- " \n",
- "\n",
- "cluster_greater_zero-14757501459592564217-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_greater_zero-2598150418935018079-value \n",
- " \n",
- "\n",
- "cluster_greater_zero-2598150418935018079-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_greater_zero-12107377412216353484-value \n",
- " \n",
- "\n",
- "cluster_greater_zero-12107377412216353484-value \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_93 \n",
- " \n",
- "\n",
- "cluster_93 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_156 \n",
- " \n",
- "\n",
- "cluster_156 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_150 \n",
- " \n",
- "\n",
- "cluster_150 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_200 \n",
- " \n",
- "\n",
- "cluster_200 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_136 \n",
- " \n",
- "\n",
- "cluster_136 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_210 \n",
- " \n",
- "\n",
- "cluster_210 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_213 \n",
- " \n",
- "\n",
- "cluster_213 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_35 \n",
- " \n",
- "\n",
- "cluster_35 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_197 \n",
- " \n",
- "\n",
- "cluster_197 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_174 \n",
- " \n",
- "\n",
- "cluster_174 \n",
- " \n",
- " \n",
- "\n",
- "outer_cluster_208 \n",
- " \n",
- "\n",
- "cluster_208 \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_dtype-15121139857639374588:s->assume_isfinite-10080759905092916392 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_isfinite-10080759905092916392:s->assume_shape-14591484260056516843 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_dtype-10080759905092916392:s->assume_shape-14591484260056516843 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_shape-14591484260056516843:s->assume_dtype-3429551472952562336 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_shape-14591484260056516843:s->NDArray_shape-15121139857639374588 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_dtype-11743562013128004906:s->assume_dtype-3429551472952562336 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_dtype-3429551472952562336:s->NDArray_dtype-10080759905092916392 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_device-15121139857639374588:s->asarray-9510298863856844727 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "asarray-9510298863856844727:s->assume_isfinite-10080759905092916392 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float___truediv__-12808993487988576005:s->Float_rational-0 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float___truediv__-12808993487988576005:s->Float_from_int-11951456526892775522 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float_from_int-11951456526892775522:s->Int___sub__-2601583573127157282 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float_from_int-12938778466233897741:s->TupleInt_length-11379923615081194535 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt_length-11379923615081194535:s->NDArray_shape-7742477628363861583 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float___truediv__-5949890542083451333:s->Float_from_int-12938778466233897741 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float___truediv__-5949890542083451333:s->Float___truediv__-5949890542083451333 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___sub__-2601583573127157282:s->Int___init__-16347205588787662656 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___sub__-2601583573127157282:s->Int___init__-11743562013128004906 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-11068081844434038611:s->MultiAxisIndexKey___add__-7546443524583315781 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-7546443524583315781:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-7546443524583315781:s->MultiAxisIndexKey___init__-17771263905015585321 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-2961965818023366657:s->MultiAxisIndexKey___add__-9019874688858188702 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-9019874688858188702:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-9019874688858188702:s->MultiAxisIndexKey___init__-9665147878604913367 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_slice-4520820669176069863:s->Slice___init__-15501507093852132239 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Slice___init__-15501507093852132239:s->OptionalInt_some-11224002729757616573 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-2650124047376210733:s->MultiAxisIndexKey___add__-4155431249018709085 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-4155431249018709085:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-4155431249018709085:s->MultiAxisIndexKey___init__-4312926155411299247 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-7690503999922668929:s->NDArray___eq__-17968234112188297122 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-17968234112188297122:s->TupleNDArray___getitem__-10045558824545728354 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-17968234112188297122:s->NDArray___getitem__-6343722845416298339 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-3689419615158525606:s->MultiAxisIndexKey___add__-10696952293987308628 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-10696952293987308628:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-10696952293987308628:s->MultiAxisIndexKey___init__-10392601675740072316 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-10236680790416494354:s->NDArray___eq__-7887474207095380730 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-7887474207095380730:s->NDArray___getitem__-16424482750509214731 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-7887474207095380730:s->TupleNDArray___getitem__-10045558824545728354 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-4468847040734877209:s->NDArray___eq__-3677844317228415595 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-3677844317228415595:s->NDArray_scalar-3845340500482103568 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-3677844317228415595:s->std-4851945112178408602 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_int-12938778466233897741:s->Int___sub__-11477953740632672431 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___sub__-11477953740632672431:s->TupleValue_length-883374682458736911 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___sub__-11477953740632672431:s->Int___add__-17495654355659155035 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-9457253364840142751:s->NDArray___eq__-5948126446311695931 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-5948126446311695931:s->asarray-17776165865978447989 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-5948126446311695931:s->NDArray_scalar-3845340500482103568 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-1091269196223507527:s->NDArray___eq__-14314110614928331155 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-14314110614928331155:s->NDArray_scalar-14757501459592564217 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-14314110614928331155:s->assume_value_one_of-5323778840018127892 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-5456168980075999428:s->MultiAxisIndexKey___add__-8188473634840644445 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-8188473634840644445:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-8188473634840644445:s->MultiAxisIndexKey___init__-12159351040657546138 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-7742477628363861583:s->reshape-4112525690760736104 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue_length-51973628441192654:s->TupleValue___init__-14757501459592564217 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___init__-14757501459592564217:s->TupleValue___getitem__-4148863126349750477 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue_length-883374682458736911:s->TupleValue___init__-3845340500482103568 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___init__-3845340500482103568:s->TupleValue___getitem__-7786309113067083429 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___add__-17495654355659155035:s->Int___sub__-11477953740632672431 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___add__-17495654355659155035:s->Int___init__-5871781006564002453 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_to_int-7118971088111087942:s->NDArray_to_value-1247190081547085489 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_to_value-1247190081547085489:s->sum-1681433789052220133 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_to_int-5352221723193614120:s->NDArray_to_value-17927184790339163283 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_to_value-17927184790339163283:s->sum-1955564354691009820 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue_length-467762655970733886:s->TupleValue___add__-15259460202689358531 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___add__-15259460202689358531:s->TupleValue___init__-14757501459592564217 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___add__-15259460202689358531:s->TupleValue___init__-3845340500482103568 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue_length-18083105675662741245:s->possible_values-12211324669098738792 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "possible_values-12211324669098738792:s->NDArray_index-12579319251068649370 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-14078601210367663714:s->NDArray_shape-12782857580910319779 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-12782857580910319779:s->unique_values-12782857580910319779 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-11605336705429392564:s->NDArray_shape-10080759905092916392 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-10080759905092916392:s->assume_shape-14591484260056516843 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-12686509587440430679:s->TupleInt___init__-103947256882385308 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___init__-103947256882385308:s->Int___init__-6755155689022739364 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-7967890718712059612:s->TupleValue_length-51973628441192654 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-7967890718712059612:s->TupleInt___add__-13243224121832505654 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___add__-13243224121832505654:s->TupleInt___init__-103947256882385308 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___add__-13243224121832505654:s->NDArray_shape-1714775736476281168 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-12159351040657546138:s->MultiAxisIndexKeyItem_slice-6287570034093543685 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-9665147878604913367:s->MultiAxisIndexKeyItem_slice-3793366872040910914 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKeyItem_slice-6287570034093543685:s->Slice___init__-14445438978175812750 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-17771263905015585321:s->MultiAxisIndexKeyItem_int-12938778466233897741 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKeyItem_int-12938778466233897741:s->TupleValue_length-883374682458736911 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-10392601675740072316:s->MultiAxisIndexKeyItem_slice-4520820669176069863 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKeyItem_slice-4520820669176069863:s->Slice___init__-15501507093852132239 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKeyItem_slice-3793366872040910914:s->Slice___init__-1162291712589082458 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Slice___init__-14445438978175812750:s->OptionalInt_some-12990752094675090395 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Slice___init__-1162291712589082458:s->OptionalInt_some-12938778466233897741 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-11120055472875231265:s->Value_float-5248274466311228812 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_float-5248274466311228812:s->Float_rational-17615343019692007359 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "asarray-7902703286805427734:s->asarray-7902703286805427734 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-17483047916985507424:s->IndexKey_multi_axis-2650124047376210733 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-17483047916985507424:s->NDArray___setitem__-18325169333216085054 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-18325169333216085054:s->IndexKey_multi_axis-11068081844434038611 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-18325169333216085054:s->NDArray___setitem__-7453141863274628760 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-18325169333216085054:s->mean-3476503888447580293 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "mean-9206860573968271485:s->NDArray___getitem__-16307929054953181812 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "mean-9206860573968271485:s->OptionalIntOrTuple_some-6859102945905124672 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-16307929054953181812:s->asarray-9510298863856844727 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-16307929054953181812:s->ndarray_index-7690503999922668929 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "concat-9071020324919791953:s->TupleNDArray___add__-17612194977553982959 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___add__-17612194977553982959:s->TupleNDArray___init__-14497633317386600947 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___add__-17612194977553982959:s->TupleNDArray___init__-6131649148769965723 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-18135092377765138894:s->TupleValue_length-51973628441192654 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-18135092377765138894:s->svd-7253966389981509278 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "svd-7253966389981509278:s->NDArray___mul__-8455018010728142919 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_T-2858018561140981349:s->NDArray___truediv__-11279504549742320031 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-11279504549742320031:s->NDArray___setitem__-5767087113385015795 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-11279504549742320031:s->NDArray___getitem__-9914932780259612220 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-18178625676753040942:s->assume_isfinite-10080759905092916392 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-18178625676753040942:s->ndarray_index-1091269196223507527 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-11026489642259430172:s->IndexKey_multi_axis-2961965818023366657 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-11026489642259430172:s->NDArray___matmul__-7132500556515696557 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-7132500556515696557:s->NDArray___sub__-8877293197236476153 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-7132500556515696557:s->NDArray___matmul__-10968585808826125111 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-15656725660214344740:s->astype-6261542238027864055 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-15656725660214344740:s->NDArray_scalar-2598150418935018079 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "astype-6261542238027864055:s->NDArray_dtype-11743562013128004906 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "astype-6261542238027864055:s->TupleNDArray___getitem__-15957548086918070248 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-2598150418935018079:s->Value_float-15173113486080567242 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-9557034512502171054:s->NDArray___setitem__-18325169333216085054 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-9557034512502171054:s->NDArray___truediv__-15656725660214344740 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-9788377807842481490:s->concat-9071020324919791953 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-9788377807842481490:s->NDArray___setitem__-5767087113385015795 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-5767087113385015795:s->ndarray_index-4468847040734877209 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-5767087113385015795:s->NDArray_scalar-12107377412216353484 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-5767087113385015795:s->std-4851945112178408602 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_T-10444575304181264970:s->NDArray___mul__-7696624279617524538 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-7696624279617524538:s->NDArray_T-17147757364762811680 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-7696624279617524538:s->ndarray-sqrt-5404195351634806774 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-9914932780259612220:s->IndexKey_multi_axis-3689419615158525606 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-9914932780259612220:s->TupleNDArray___getitem__-1818913068061409678 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-14757501459592564217:s->TupleValue___getitem__-9658389681233211557 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-9658389681233211557:s->TupleValue___init__-14757501459592564217 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-16424482750509214731:s->IndexKey_int-12938778466233897741 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-16424482750509214731:s->concat-430064524623572644 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "concat-430064524623572644:s->TupleNDArray___init__-12782857580910319779 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-3215265837560371319:s->NDArray_T-2858018561140981349 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-3215265837560371319:s->NDArray___getitem__-11494903289568215254 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-11494903289568215254:s->IndexKey_slice-4520820669176069863 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-11494903289568215254:s->TupleNDArray___getitem__-18135092377765138894 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-1818913068061409678:s->TupleValue_length-467762655970733886 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-1818913068061409678:s->svd-7253966389981509278 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-2205987174022554874:s->IndexKey_multi_axis-11068081844434038611 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-2205987174022554874:s->NDArray___setitem__-18325169333216085054 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___gt__-15651908559655936539:s->TupleNDArray___getitem__-18135092377765138894 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___gt__-15651908559655936539:s->NDArray_scalar-1143242824664700181 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___gt__-8664676620264668937:s->TupleNDArray___getitem__-17539377729349800285 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___gt__-8664676620264668937:s->NDArray___mul__-8440009558605893705 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-17539377729349800285:s->TupleValue_length-883374682458736911 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-17539377729349800285:s->svd-2189404700831293460 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-8440009558605893705:s->NDArray_scalar-1143242824664700181 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-8440009558605893705:s->NDArray___getitem__-17758114586016463110 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "asarray-17776165865978447989:s->reshape-4112525690760736104 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-3845340500482103568:s->TupleValue___getitem__-1353837537593392198 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "sum-1955564354691009820:s->astype-14592420363448682842 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "astype-14592420363448682842:s->NDArray___gt__-15651908559655936539 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-13476223401931994896:s->IndexKey_multi_axis-5456168980075999428 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-13476223401931994896:s->NDArray_T-15484955256727723166 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_T-15484955256727723166:s->TupleNDArray___getitem__-10680274783444675613 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-15121139857639374588:s->assume_isfinite-10080759905092916392 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-7453141863274628760:s->IndexKey_multi_axis-2650124047376210733 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-7453141863274628760:s->mean-9206860573968271485 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-7453141863274628760:s->zeros-16505489609336576318 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "mean-3476503888447580293:s->OptionalIntOrTuple_some-6859102945905124672 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "mean-3476503888447580293:s->NDArray___getitem__-3836913244690017957 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-10680274783444675613:s->TupleValue_length-18083105675662741245 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-10680274783444675613:s->svd-2189404700831293460 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "astype-12468708834165933853:s->NDArray___gt__-8664676620264668937 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-15588902513610108474:s->NDArray_index-1182067134106770624 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-1182067134106770624:s->TupleNDArray___getitem__-17539377729349800285 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-17758114586016463110:s->TupleNDArray___getitem__-17539377729349800285 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_float-15173113486080567242:s->Float_rational-5871781006564002453 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-3836913244690017957:s->assume_isfinite-10080759905092916392 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-3836913244690017957:s->ndarray_index-10236680790416494354 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-10045558824545728354:s->TupleInt_length-11379923615081194535 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-10045558824545728354:s->unique_inverse-7742477628363861583 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-6343722845416298339:s->NDArray_vector-467762655970733886 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-12107377412216353484:s->Value_float-6235596405652351031 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_float-6235596405652351031:s->Float___init__-10858178701590265856 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "sum-1681433789052220133:s->astype-12468708834165933853 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-13392291772433010205:s->NDArray_T-10444575304181264970 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-13392291772433010205:s->NDArray___truediv__-3215265837560371319 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-15957548086918070248:s->Int___sub__-11477953740632672431 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-15957548086918070248:s->unique_counts-7742477628363861583 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "reshape-4112525690760736104:s->reshape-4112525690760736104 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_value_one_of-5323778840018127892:s->TupleValue___add__-15259460202689358531 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_value_one_of-5323778840018127892:s->assume_shape-8316602628326787375 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_shape-8316602628326787375:s->TupleInt___init__-1870696621799859130 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "std-4851945112178408602:s->OptionalIntOrTuple_some-6859102945905124672 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "std-4851945112178408602:s->concat-9071020324919791953 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "svd-2189404700831293460:s->NDArray___matmul__-13392291772433010205 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "unique_counts-7742477628363861583:s->reshape-4112525690760736104 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-8455018010728142919:s->NDArray___truediv__-9788377807842481490 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-8455018010728142919:s->ndarray-sqrt-4416873412293684555 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray-sqrt-4416873412293684555:s->NDArray_scalar-11120055472875231265 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "zeros-16505489609336576318:s->TupleInt___add__-10752996994297486686 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "zeros-16505489609336576318:s->OptionalDType_some-3429551472952562336 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "zeros-16505489609336576318:s->OptionalDevice_some-5144327209428843504 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___add__-10752996994297486686:s->TupleInt___init__-103947256882385308 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___add__-10752996994297486686:s->TupleInt___init__-6079675520328773069 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalDType_some-3429551472952562336:s->NDArray_dtype-11743562013128004906 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalDevice_some-5144327209428843504:s->NDArray_device-15121139857639374588 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-13770179520251441998:s->Value_int-1870696621799859130 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_int-1870696621799859130:s->Int___init__-16347205588787662656 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-9812641508136405718:s->asarray-9510298863856844727 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-9812641508136405718:s->ndarray_index-9457253364840142751 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-4099386548708531027:s->NDArray___truediv__-15656725660214344740 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-4099386548708531027:s->NDArray_scalar-13770179520251441998 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_T-17147757364762811680:s->NDArray___sub__-1374586120005010617 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-1374586120005010617:s->NDArray___setitem__-18325169333216085054 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-1374586120005010617:s->NDArray___matmul__-9557034512502171054 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-8877293197236476153:s->assume_isfinite-10080759905092916392 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-8877293197236476153:s->NDArray___matmul__-9557034512502171054 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-9558798608273926456:s->NDArray___getitem__-18178625676753040942 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-9558798608273926456:s->NDArray___getitem__-2205987174022554874 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-10968585808826125111:s->NDArray___truediv__-3215265837560371319 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-10968585808826125111:s->NDArray___getitem__-13476223401931994896 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "unique_inverse-7742477628363861583:s->assume_value_one_of-5323778840018127892 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray-sqrt-5404195351634806774:s->NDArray___mul__-3756686807776082277 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-3756686807776082277:s->NDArray_scalar-12107377412216353484 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-3756686807776082277:s->NDArray___mul__-4099386548708531027 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-10430407918099810154:s->NDArray___getitem__-17483047916985507424 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-10430407918099810154:s->NDArray___getitem__-9812641508136405718 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___init__-12782857580910319779:s->unique_values-12782857580910319779 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-13683004811263061306:s->unique_inverse-7742477628363861583 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "unique_values-12782857580910319779:s->NDArray_vector-18083105675662741245 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_vector-18083105675662741245:s->possible_values-12211324669098738792 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "unique_values-7742477628363861583:s->asarray-17776165865978447989 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_vector-467762655970733886:s->possible_values-13042725723116283049 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "possible_values-13042725723116283049:s->NDArray_index-17067340853146132798 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-1353837537593392198:s->possible_values-12211324669098738792 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___init__-1870696621799859130:s->TupleInt___getitem__-11605336705429392564 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalInt_some-11224002729757616573:s->Value_to_int-5352221723193614120 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalInt_some-12938778466233897741:s->Int___init__-5871781006564002453 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalInt_some-12990752094675090395:s->Value_to_int-7118971088111087942 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-11951456526892775522:s->Int___sub__-2601583573127157282 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-6079675520328773069:s->TupleValue_length-18083105675662741245 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-103947256882385308:s->TupleInt___getitem__-12686509587440430679 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-1870696621799859130:s->TupleInt___getitem__-11605336705429392564 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-12938778466233897741:s->TupleValue_length-883374682458736911 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-1714775736476281168:s->assume_shape-8316602628326787375 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___init__-6079675520328773069:s->TupleValue_length-467762655970733886 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___init__-12938778466233897741:s->TupleInt_length-11379923615081194535 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___init__-14497633317386600947:s->NDArray___sub__-10430407918099810154 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___init__-6131649148769965723:s->NDArray___sub__-9558798608273926456 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-7786309113067083429:s->TupleValue___add__-15259460202689358531 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-12579319251068649370:s->concat-430064524623572644 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-17067340853146132798:s->assume_shape-8316602628326787375 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-4148863126349750477:s->TupleInt_length-11379923615081194535 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-4148863126349750477:s->possible_values-13042725723116283049 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-13770179520251441998:s->Value_int-1870696621799859130 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-14757501459592564217:s->TupleValue___getitem__-14448359888109329694 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-14448359888109329694:s->Int___sub__-11477953740632672431 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-14448359888109329694:s->possible_values-12211324669098738792 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-2598150418935018079:s->Value_float-15173113486080567242 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-12107377412216353484:s->Value_float-6235596405652351031 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-3712217405396014230:s->sum-1955564354691009820 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_int-12938778466233897741:s->Int___init__-5871781006564002453 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-10864543514592368202:s->NDArray_vector-467762655970733886 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-10864543514592368202:s->TupleInt___init__-12938778466233897741 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-15769018209198649053:s->asarray-17776165865978447989 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-6690955771313385503:s->sum-1681433789052220133 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-16788298149597563309:s->NDArray_vector-18083105675662741245 \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_dtype-15121139857639374588 \n",
- "\n",
- " \n",
- "NDArray_dtype \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_isfinite-10080759905092916392 \n",
- "\n",
- " \n",
- "assume_isfinite \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_dtype-10080759905092916392 \n",
- "\n",
- " \n",
- "NDArray_dtype \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_shape-14591484260056516843 \n",
- "\n",
- " \n",
- "assume_shape \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_dtype-11743562013128004906 \n",
- "\n",
- " \n",
- "NDArray_dtype \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_dtype-3429551472952562336 \n",
- "\n",
- " \n",
- "assume_dtype(NDArray_var("X"), ·) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "DType_float64-0 \n",
- "\n",
- " \n",
- "DType_float64 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_device-15121139857639374588 \n",
- "\n",
- " \n",
- "NDArray_device \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "asarray-9510298863856844727 \n",
- "\n",
- " \n",
- "asarray(·, OptionalDType_none, OptionalBool_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float___truediv__-12808993487988576005 \n",
- "\n",
- " \n",
- "Float___truediv__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float_rational-0 \n",
- "\n",
- " \n",
- "Float_rational((rational 1 1)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float_from_int-11951456526892775522 \n",
- "\n",
- " \n",
- "Float_from_int \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float_rational-17615343019692007359 \n",
- "\n",
- " \n",
- "Float_rational((rational 1 999998)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float_from_int-12938778466233897741 \n",
- "\n",
- " \n",
- "Float_from_int \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt_length-11379923615081194535 \n",
- "\n",
- " \n",
- "TupleInt_length \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float___truediv__-5949890542083451333 \n",
- "\n",
- " \n",
- "Float___truediv__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float___init__-10858178701590265856 \n",
- "\n",
- " \n",
- "Float___init__(1.0) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float___init__-15726603433882419200 \n",
- "\n",
- " \n",
- "Float___init__(1000000.0) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float_rational-5871781006564002453 \n",
- "\n",
- " \n",
- "Float_rational((rational 1000000 1)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___sub__-2601583573127157282 \n",
- "\n",
- " \n",
- "Int___sub__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Float_rational-11743562013128004906 \n",
- "\n",
- " \n",
- "Float_rational((rational 999998 1)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-11068081844434038611 \n",
- "\n",
- " \n",
- "IndexKey_multi_axis \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-7546443524583315781 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-2961965818023366657 \n",
- "\n",
- " \n",
- "IndexKey_multi_axis \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-9019874688858188702 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_slice-4520820669176069863 \n",
- "\n",
- " \n",
- "IndexKey_slice \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Slice___init__-15501507093852132239 \n",
- "\n",
- " \n",
- "Slice___init__(OptionalInt_none, ·, OptionalInt_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-2650124047376210733 \n",
- "\n",
- " \n",
- "IndexKey_multi_axis \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-4155431249018709085 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-7690503999922668929 \n",
- "\n",
- " \n",
- "ndarray_index \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-17968234112188297122 \n",
- "\n",
- " \n",
- "NDArray___eq__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-3689419615158525606 \n",
- "\n",
- " \n",
- "IndexKey_multi_axis \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-10696952293987308628 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-10236680790416494354 \n",
- "\n",
- " \n",
- "ndarray_index \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-7887474207095380730 \n",
- "\n",
- " \n",
- "NDArray___eq__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-4468847040734877209 \n",
- "\n",
- " \n",
- "ndarray_index \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-3677844317228415595 \n",
- "\n",
- " \n",
- "NDArray___eq__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_int-12938778466233897741 \n",
- "\n",
- " \n",
- "IndexKey_int \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___sub__-11477953740632672431 \n",
- "\n",
- " \n",
- "Int___sub__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-9457253364840142751 \n",
- "\n",
- " \n",
- "ndarray_index \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-5948126446311695931 \n",
- "\n",
- " \n",
- "NDArray___eq__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray_index-1091269196223507527 \n",
- "\n",
- " \n",
- "ndarray_index \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___eq__-14314110614928331155 \n",
- "\n",
- " \n",
- "NDArray___eq__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "IndexKey_multi_axis-5456168980075999428 \n",
- "\n",
- " \n",
- "IndexKey_multi_axis \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___add__-8188473634840644445 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___init__-16347205588787662656 \n",
- "\n",
- " \n",
- "Int___init__(1000000) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___init__-11743562013128004906 \n",
- "\n",
- " \n",
- "Int___init__(2) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___init__-4603643575659657750 \n",
- "\n",
- " \n",
- "Int___init__(999998) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-7742477628363861583 \n",
- "\n",
- " \n",
- "NDArray_shape \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue_length-51973628441192654 \n",
- "\n",
- " \n",
- "TupleValue_length \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___init__-14757501459592564217 \n",
- "\n",
- " \n",
- "TupleValue___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue_length-883374682458736911 \n",
- "\n",
- " \n",
- "TupleValue_length \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___init__-3845340500482103568 \n",
- "\n",
- " \n",
- "TupleValue___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___add__-17495654355659155035 \n",
- "\n",
- " \n",
- "Int___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___init__-5871781006564002453 \n",
- "\n",
- " \n",
- "Int___init__(1) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_to_int-7118971088111087942 \n",
- "\n",
- " \n",
- "Value_to_int \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_to_value-1247190081547085489 \n",
- "\n",
- " \n",
- "NDArray_to_value \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_to_int-5352221723193614120 \n",
- "\n",
- " \n",
- "Value_to_int \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_to_value-17927184790339163283 \n",
- "\n",
- " \n",
- "NDArray_to_value \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue_length-467762655970733886 \n",
- "\n",
- " \n",
- "TupleValue_length \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___add__-15259460202689358531 \n",
- "\n",
- " \n",
- "TupleValue___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue_length-18083105675662741245 \n",
- "\n",
- " \n",
- "TupleValue_length \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "possible_values-12211324669098738792 \n",
- "\n",
- " \n",
- "possible_values \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-14078601210367663714 \n",
- "\n",
- " \n",
- "TupleInt___getitem__(·, Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-12782857580910319779 \n",
- "\n",
- " \n",
- "NDArray_shape \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-11605336705429392564 \n",
- "\n",
- " \n",
- "TupleInt___getitem__(·, Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-10080759905092916392 \n",
- "\n",
- " \n",
- "NDArray_shape \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-12686509587440430679 \n",
- "\n",
- " \n",
- "TupleInt___getitem__(·, Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___init__-103947256882385308 \n",
- "\n",
- " \n",
- "TupleInt___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___getitem__-7967890718712059612 \n",
- "\n",
- " \n",
- "TupleInt___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___add__-13243224121832505654 \n",
- "\n",
- " \n",
- "TupleInt___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int___init__-6755155689022739364 \n",
- "\n",
- " \n",
- "Int___init__(20) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-9353306107957757443 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___init__(MultiAxisIndexKeyItem_slice(Slice___init__(OptionalInt_none, OptionalInt_none, OptionalInt_none))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-12159351040657546138 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-9665147878604913367 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKeyItem_slice-6287570034093543685 \n",
- "\n",
- " \n",
- "MultiAxisIndexKeyItem_slice \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-17771263905015585321 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKeyItem_int-12938778466233897741 \n",
- "\n",
- " \n",
- "MultiAxisIndexKeyItem_int \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-4312926155411299247 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___init__(MultiAxisIndexKeyItem_int(Int___init__(0))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKey___init__-10392601675740072316 \n",
- "\n",
- " \n",
- "MultiAxisIndexKey___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKeyItem_slice-4520820669176069863 \n",
- "\n",
- " \n",
- "MultiAxisIndexKeyItem_slice \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "MultiAxisIndexKeyItem_slice-3793366872040910914 \n",
- "\n",
- " \n",
- "MultiAxisIndexKeyItem_slice \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Slice___init__-14445438978175812750 \n",
- "\n",
- " \n",
- "Slice___init__(OptionalInt_none, ·, OptionalInt_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Slice___init__-1162291712589082458 \n",
- "\n",
- " \n",
- "Slice___init__(OptionalInt_none, ·, OptionalInt_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-11120055472875231265 \n",
- "\n",
- " \n",
- "NDArray_scalar \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_float-5248274466311228812 \n",
- "\n",
- " \n",
- "Value_float \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "asarray-7902703286805427734 \n",
- "\n",
- " \n",
- "asarray(·, OptionalDType_none, OptionalBool_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-17483047916985507424 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-18325169333216085054 \n",
- "\n",
- " \n",
- "NDArray___setitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "mean-9206860573968271485 \n",
- "\n",
- " \n",
- "mean(·, ·, FALSE) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-16307929054953181812 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalIntOrTuple_some-6859102945905124672 \n",
- "\n",
- " \n",
- "OptionalIntOrTuple_some(IntOrTuple_int(Int___init__(0))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "concat-9071020324919791953 \n",
- "\n",
- " \n",
- "concat(·, OptionalInt_some(Int___init__(0))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___add__-17612194977553982959 \n",
- "\n",
- " \n",
- "TupleNDArray___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-18135092377765138894 \n",
- "\n",
- " \n",
- "TupleNDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "svd-7253966389981509278 \n",
- "\n",
- " \n",
- "svd(·, FALSE) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_T-2858018561140981349 \n",
- "\n",
- " \n",
- "NDArray_T \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-11279504549742320031 \n",
- "\n",
- " \n",
- "NDArray___truediv__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-18178625676753040942 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-11026489642259430172 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-7132500556515696557 \n",
- "\n",
- " \n",
- "NDArray___matmul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-15656725660214344740 \n",
- "\n",
- " \n",
- "NDArray___truediv__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "astype-6261542238027864055 \n",
- "\n",
- " \n",
- "astype \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-2598150418935018079 \n",
- "\n",
- " \n",
- "NDArray_scalar \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-9557034512502171054 \n",
- "\n",
- " \n",
- "NDArray___matmul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-9788377807842481490 \n",
- "\n",
- " \n",
- "NDArray___truediv__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-5767087113385015795 \n",
- "\n",
- " \n",
- "NDArray___setitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_T-10444575304181264970 \n",
- "\n",
- " \n",
- "NDArray_T \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-7696624279617524538 \n",
- "\n",
- " \n",
- "NDArray___mul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-9914932780259612220 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-14757501459592564217 \n",
- "\n",
- " \n",
- "NDArray_scalar \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-9658389681233211557 \n",
- "\n",
- " \n",
- "TupleValue___getitem__(·, Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-16424482750509214731 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "concat-430064524623572644 \n",
- "\n",
- " \n",
- "concat(·, OptionalInt_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___truediv__-3215265837560371319 \n",
- "\n",
- " \n",
- "NDArray___truediv__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-11494903289568215254 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-1818913068061409678 \n",
- "\n",
- " \n",
- "TupleNDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-2205987174022554874 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___gt__-15651908559655936539 \n",
- "\n",
- " \n",
- "NDArray___gt__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-1143242824664700181 \n",
- "\n",
- " \n",
- "NDArray_scalar(Value_float(Float___init__(0.0001))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___gt__-8664676620264668937 \n",
- "\n",
- " \n",
- "NDArray___gt__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-17539377729349800285 \n",
- "\n",
- " \n",
- "TupleNDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-8440009558605893705 \n",
- "\n",
- " \n",
- "NDArray___mul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "asarray-17776165865978447989 \n",
- "\n",
- " \n",
- "asarray(·, OptionalDType_none, OptionalBool_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-3845340500482103568 \n",
- "\n",
- " \n",
- "NDArray_scalar \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "sum-1955564354691009820 \n",
- "\n",
- " \n",
- "sum(·, OptionalIntOrTuple_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "astype-14592420363448682842 \n",
- "\n",
- " \n",
- "astype(·, DType_int32) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-13476223401931994896 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_T-15484955256727723166 \n",
- "\n",
- " \n",
- "NDArray_T \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-15121139857639374588 \n",
- "\n",
- " \n",
- "NDArray_shape \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___setitem__-7453141863274628760 \n",
- "\n",
- " \n",
- "NDArray___setitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "mean-3476503888447580293 \n",
- "\n",
- " \n",
- "mean(·, ·, FALSE) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-10680274783444675613 \n",
- "\n",
- " \n",
- "TupleNDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "astype-12468708834165933853 \n",
- "\n",
- " \n",
- "astype(·, DType_int32) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-15588902513610108474 \n",
- "\n",
- " \n",
- "NDArray_scalar \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-1182067134106770624 \n",
- "\n",
- " \n",
- "NDArray_index(·, TupleInt___init__(Int___init__(0))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-17758114586016463110 \n",
- "\n",
- " \n",
- "NDArray___getitem__(·, IndexKey_int(Int___init__(0))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_float-15173113486080567242 \n",
- "\n",
- " \n",
- "Value_float \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-3836913244690017957 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-10045558824545728354 \n",
- "\n",
- " \n",
- "TupleNDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-6343722845416298339 \n",
- "\n",
- " \n",
- "NDArray___getitem__(·, IndexKey_int(Int___init__(0))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-12107377412216353484 \n",
- "\n",
- " \n",
- "NDArray_scalar \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_float-6235596405652351031 \n",
- "\n",
- " \n",
- "Value_float \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "sum-1681433789052220133 \n",
- "\n",
- " \n",
- "sum(·, OptionalIntOrTuple_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-13392291772433010205 \n",
- "\n",
- " \n",
- "NDArray___matmul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-15957548086918070248 \n",
- "\n",
- " \n",
- "TupleNDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "reshape-4112525690760736104 \n",
- "\n",
- " \n",
- "reshape(·, TupleInt___init__(Int___init__(-1)), OptionalBool_none) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_value_one_of-5323778840018127892 \n",
- "\n",
- " \n",
- "assume_value_one_of \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "assume_shape-8316602628326787375 \n",
- "\n",
- " \n",
- "assume_shape(assume_dtype(NDArray_var("y"), DType_int64), ·) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "std-4851945112178408602 \n",
- "\n",
- " \n",
- "std \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "svd-2189404700831293460 \n",
- "\n",
- " \n",
- "svd(·, FALSE) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "unique_counts-7742477628363861583 \n",
- "\n",
- " \n",
- "unique_counts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-8455018010728142919 \n",
- "\n",
- " \n",
- "NDArray___mul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray-sqrt-4416873412293684555 \n",
- "\n",
- " \n",
- "ndarray-sqrt \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "zeros-16505489609336576318 \n",
- "\n",
- " \n",
- "zeros \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___add__-10752996994297486686 \n",
- "\n",
- " \n",
- "TupleInt___add__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalDType_some-3429551472952562336 \n",
- "\n",
- " \n",
- "OptionalDType_some \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalDevice_some-5144327209428843504 \n",
- "\n",
- " \n",
- "OptionalDevice_some \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_scalar-13770179520251441998 \n",
- "\n",
- " \n",
- "NDArray_scalar \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_int-1870696621799859130 \n",
- "\n",
- " \n",
- "Value_int \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___getitem__-9812641508136405718 \n",
- "\n",
- " \n",
- "NDArray___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-4099386548708531027 \n",
- "\n",
- " \n",
- "NDArray___mul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_T-17147757364762811680 \n",
- "\n",
- " \n",
- "NDArray_T \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-1374586120005010617 \n",
- "\n",
- " \n",
- "NDArray___sub__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-8877293197236476153 \n",
- "\n",
- " \n",
- "NDArray___sub__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-9558798608273926456 \n",
- "\n",
- " \n",
- "NDArray___sub__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___matmul__-10968585808826125111 \n",
- "\n",
- " \n",
- "NDArray___matmul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "unique_inverse-7742477628363861583 \n",
- "\n",
- " \n",
- "unique_inverse \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "ndarray-sqrt-5404195351634806774 \n",
- "\n",
- " \n",
- "ndarray-sqrt \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___mul__-3756686807776082277 \n",
- "\n",
- " \n",
- "NDArray___mul__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray___sub__-10430407918099810154 \n",
- "\n",
- " \n",
- "NDArray___sub__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___init__-12782857580910319779 \n",
- "\n",
- " \n",
- "TupleNDArray___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___getitem__-13683004811263061306 \n",
- "\n",
- " \n",
- "TupleNDArray___getitem__(·, Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "unique_values-12782857580910319779 \n",
- "\n",
- " \n",
- "unique_values \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_vector-18083105675662741245 \n",
- "\n",
- " \n",
- "NDArray_vector \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "unique_values-7742477628363861583 \n",
- "\n",
- " \n",
- "unique_values \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_vector-467762655970733886 \n",
- "\n",
- " \n",
- "NDArray_vector \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "possible_values-13042725723116283049 \n",
- "\n",
- " \n",
- "possible_values \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-1353837537593392198 \n",
- "\n",
- " \n",
- "TupleValue___getitem__(·, Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___init__-1870696621799859130 \n",
- "\n",
- " \n",
- "TupleInt___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalInt_some-11224002729757616573 \n",
- "\n",
- " \n",
- "OptionalInt_some \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalInt_some-12938778466233897741 \n",
- "\n",
- " \n",
- "OptionalInt_some \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "OptionalInt_some-12990752094675090395 \n",
- "\n",
- " \n",
- "OptionalInt_some \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-7586556743040283621-value \n",
- "\n",
- " \n",
- "(py-object -9223372036570011657 0) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-7586556743040283621 \n",
- "\n",
- " \n",
- "Int_to_py(Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-11951456526892775522 \n",
- "\n",
- " \n",
- "Int_to_py \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-11951456526892775522-value \n",
- "\n",
- " \n",
- "(py-object -9223372036570011657 999998) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-6079675520328773069 \n",
- "\n",
- " \n",
- "Int_to_py \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-6079675520328773069-value \n",
- "\n",
- " \n",
- "(py-object -9223372036570011657 2) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-103947256882385308 \n",
- "\n",
- " \n",
- "Int_to_py \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-103947256882385308-value \n",
- "\n",
- " \n",
- "(py-object -9223372036570011657 20) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-5092353580987650850-value \n",
- "\n",
- " \n",
- "(py-object -9223372036570011657 -2) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-5092353580987650850 \n",
- "\n",
- " \n",
- "Int_to_py(Int___init__(-1)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-1870696621799859130 \n",
- "\n",
- " \n",
- "Int_to_py \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-1870696621799859130-value \n",
- "\n",
- " \n",
- "(py-object -9223372036570011657 1000000) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Boolean_to_py-155920885323577962-value \n",
- "\n",
- " \n",
- "(py-object 284764003 0) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Boolean_to_py-155920885323577962 \n",
- "\n",
- " \n",
- "Boolean_to_py(FALSE) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-12938778466233897741 \n",
- "\n",
- " \n",
- "Int_to_py \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Int_to_py-12938778466233897741-value \n",
- "\n",
- " \n",
- "(py-object -9223372036570011657 1) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_shape-1714775736476281168 \n",
- "\n",
- " \n",
- "NDArray_shape \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___init__-6079675520328773069 \n",
- "\n",
- " \n",
- "TupleInt___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleInt___init__-12938778466233897741 \n",
- "\n",
- " \n",
- "TupleInt___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___init__-14497633317386600947 \n",
- "\n",
- " \n",
- "TupleNDArray___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleNDArray___init__-6131649148769965723 \n",
- "\n",
- " \n",
- "TupleNDArray___init__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-7786309113067083429 \n",
- "\n",
- " \n",
- "TupleValue___getitem__(·, Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-12579319251068649370 \n",
- "\n",
- " \n",
- "NDArray_index(·, ALL_INDICES) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-17067340853146132798 \n",
- "\n",
- " \n",
- "NDArray_index(·, ALL_INDICES) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-4148863126349750477 \n",
- "\n",
- " \n",
- "TupleValue___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-1143242824664700181-value \n",
- "\n",
- " \n",
- "() \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-1143242824664700181 \n",
- "\n",
- " \n",
- "greater_zero(Value_float(Float___init__(0.0001))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-13770179520251441998 \n",
- "\n",
- " \n",
- "greater_zero \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-13770179520251441998-value \n",
- "\n",
- " \n",
- "() \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-14757501459592564217 \n",
- "\n",
- " \n",
- "greater_zero \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "TupleValue___getitem__-14448359888109329694 \n",
- "\n",
- " \n",
- "TupleValue___getitem__ \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-14757501459592564217-value \n",
- "\n",
- " \n",
- "() \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-2598150418935018079 \n",
- "\n",
- " \n",
- "greater_zero \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-2598150418935018079-value \n",
- "\n",
- " \n",
- "() \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-12107377412216353484 \n",
- "\n",
- " \n",
- "greater_zero \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "greater_zero-12107377412216353484-value \n",
- "\n",
- " \n",
- "() \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-3712217405396014230 \n",
- "\n",
- " \n",
- "NDArray_index(·, TupleInt_EMPTY) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_int-12938778466233897741 \n",
- "\n",
- " \n",
- "Value_int \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-10864543514592368202 \n",
- "\n",
- " \n",
- "NDArray_index \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-15769018209198649053 \n",
- "\n",
- " \n",
- "NDArray_index(·, ALL_INDICES) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-5822399466274154604 \n",
- "\n",
- " \n",
- "NDArray_index(assume_dtype(NDArray_var("y"), DType_int64), ALL_INDICES) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-7547271516962905184 \n",
- "\n",
- " \n",
- "NDArray_index(NDArray_var("y"), ALL_INDICES) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-6690955771313385503 \n",
- "\n",
- " \n",
- "NDArray_index(·, TupleInt_EMPTY) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "NDArray_index-16788298149597563309 \n",
- "\n",
- " \n",
- "NDArray_index(·, TupleInt___init__(Int___init__(0))) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- "\n",
- "\n",
- "Value_int-7586556743040283621 \n",
- "\n",
- " \n",
- "Value_int(Int___init__(0)) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
+ "text/latex": [
+ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{X}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}isfinite}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{y}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int64}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}value\\PYZus{}one\\PYZus{}of}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{=} \\PY{n}{asarray}\\PY{p}{(}\\PY{n}{reshape}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{)}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{o}{\\PYZhy{}}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{=} \\PY{n}{astype}\\PY{p}{(}\\PY{n}{unique\\PYZus{}counts}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{dtype}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1000000.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{=} \\PY{n}{zeros}\\PY{p}{(}\n",
+ " \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,}\n",
+ " \\PY{n}{OptionalDType}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{dtype}\\PY{p}{)}\\PY{p}{,}\n",
+ " \\PY{n}{OptionalDevice}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{device}\\PY{p}{)}\\PY{p}{,}\n",
+ "\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1} \\PY{o}{=} \\PY{n}{OptionalIntOrTuple}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{IntOrTuple}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]} \\PY{o}{=} \\PY{n}{mean}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]} \\PY{o}{=} \\PY{n}{mean}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}6} \\PY{o}{=} \\PY{n}{unique\\PYZus{}values}\\PY{p}{(}\\PY{n}{concat}\\PY{p}{(}\\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{unique\\PYZus{}values}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{=} \\PY{n}{concat}\\PY{p}{(}\n",
+ " \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{==} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]}\\PY{p}{)}\n",
+ " \\PY{o}{+} \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{==} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,}\n",
+ " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,}\n",
+ "\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}8} \\PY{o}{=} \\PY{n}{std}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{std}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\n",
+ " \\PY{n}{sqrt}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)} \\PY{o}{/} \\PY{n}{Float}\\PY{o}{.}\\PY{n}{from\\PYZus{}int}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{p}{)}\\PY{p}{,} \\PY{n}{FALSE}\n",
+ "\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}Slice\\PYZus{}1} \\PY{o}{=} \\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}int}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}9} \\PY{o}{=} \\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{/} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\n",
+ " \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\n",
+ "\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{]}\n",
+ "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\n",
+ " \\PY{p}{(}\n",
+ " \\PY{n}{sqrt}\\PY{p}{(}\n",
+ " \\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\n",
+ " \\PY{o}{*} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)} \\PY{o}{/} \\PY{n}{Float}\\PY{o}{.}\\PY{n}{from\\PYZus{}int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T}\n",
+ " \\PY{p}{)}\\PY{o}{.}\\PY{n}{T}\n",
+ " \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}9}\\PY{p}{,}\n",
+ " \\PY{n}{FALSE}\\PY{p}{,}\n",
+ "\\PY{p}{)}\n",
+ "\\PY{p}{(}\n",
+ " \\PY{p}{(}\\PY{n}{asarray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{)}\\PY{p}{)}\n",
+ " \\PY{o}{@} \\PY{p}{(}\n",
+ " \\PY{n}{\\PYZus{}NDArray\\PYZus{}9}\n",
+ " \\PY{o}{@} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{o}{.}\\PY{n}{T}\\PY{p}{[}\n",
+ " \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\n",
+ " \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\n",
+ " \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\n",
+ " \\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\n",
+ " \\PY{n}{Slice}\\PY{p}{(}\n",
+ " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,}\n",
+ " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\n",
+ " \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\n",
+ " \\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\n",
+ " \\PY{o}{.}\\PY{n}{to\\PYZus{}int}\n",
+ " \\PY{p}{)}\\PY{p}{,}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{]}\n",
+ " \\PY{p}{)}\n",
+ "\\PY{p}{)}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
+ "\\end{Verbatim}\n"
],
- "source": [
- "egraph.display(n_inline_leaves=3, split_primitive_outputs=True)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "21e4ee3a",
- "metadata": {},
- "source": [
- "## Translating for Numba\n",
- "\n",
- "We are getting closer to a form we could translate back to Numba, but we have to make a few changes. Numba doesn't\n",
- "support the `axis` keyword for `mean` or `std`, but it does support it for `sum`, so we have to translate all forms\n",
- "from one to the other, with a rule like this (defined in [`egglog.exp.array_api_numba`](https://github.com/egraphs-good/egglog-python/blob/main/python/egglog/exp/array_api_numba.py)):\n",
- "\n",
- "```python\n",
- "axis = OptionalIntOrTuple.some(IntOrTuple.int(i))\n",
- "rewrite(std(x, axis)).to(sqrt(mean(square(abs(x - mean(x, axis, keepdims=TRUE))), axis)))\n",
- "```\n",
- "\n",
- "We can run those additional rewrites now to get a new extracted version\n"
+ "text/plain": [
+ "_NDArray_1 = NDArray.var(\"X\")\n",
+ "assume_dtype(_NDArray_1, DType.float64)\n",
+ "assume_shape(_NDArray_1, TupleInt(Int(1000000)) + TupleInt(Int(20)))\n",
+ "assume_isfinite(_NDArray_1)\n",
+ "_NDArray_2 = NDArray.var(\"y\")\n",
+ "assume_dtype(_NDArray_2, DType.int64)\n",
+ "assume_shape(_NDArray_2, TupleInt(Int(1000000)))\n",
+ "assume_value_one_of(_NDArray_2, TupleValue(Value.int(Int(0))) + TupleValue(Value.int(Int(1))))\n",
+ "_NDArray_3 = asarray(reshape(asarray(_NDArray_2), TupleInt(Int(-1))))\n",
+ "_NDArray_4 = astype(unique_counts(_NDArray_3)[Int(1)], asarray(_NDArray_1).dtype) / NDArray.scalar(Value.float(Float(1000000.0)))\n",
+ "_NDArray_5 = zeros(\n",
+ " TupleInt(unique_inverse(_NDArray_3)[Int(0)].shape[Int(0)]) + TupleInt(asarray(_NDArray_1).shape[Int(1)]),\n",
+ " OptionalDType.some(asarray(_NDArray_1).dtype),\n",
+ " OptionalDevice.some(asarray(_NDArray_1).device),\n",
+ ")\n",
+ "_MultiAxisIndexKey_1 = MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice()))\n",
+ "_IndexKey_1 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(0))) + _MultiAxisIndexKey_1)\n",
+ "_OptionalIntOrTuple_1 = OptionalIntOrTuple.some(IntOrTuple.int(Int(0)))\n",
+ "_NDArray_5[_IndexKey_1] = mean(asarray(_NDArray_1)[ndarray_index(unique_inverse(_NDArray_3)[Int(1)] == NDArray.scalar(Value.int(Int(0))))], _OptionalIntOrTuple_1)\n",
+ "_IndexKey_2 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(1))) + _MultiAxisIndexKey_1)\n",
+ "_NDArray_5[_IndexKey_2] = mean(asarray(_NDArray_1)[ndarray_index(unique_inverse(_NDArray_3)[Int(1)] == NDArray.scalar(Value.int(Int(1))))], _OptionalIntOrTuple_1)\n",
+ "_NDArray_6 = unique_values(concat(TupleNDArray(unique_values(asarray(_NDArray_3)))))\n",
+ "_NDArray_7 = concat(\n",
+ " TupleNDArray(asarray(_NDArray_1)[ndarray_index(_NDArray_3 == _NDArray_6[IndexKey.int(Int(0))])] - _NDArray_5[_IndexKey_1])\n",
+ " + TupleNDArray(asarray(_NDArray_1)[ndarray_index(_NDArray_3 == _NDArray_6[IndexKey.int(Int(1))])] - _NDArray_5[_IndexKey_2]),\n",
+ " OptionalInt.some(Int(0)),\n",
+ ")\n",
+ "_NDArray_8 = std(_NDArray_7, _OptionalIntOrTuple_1)\n",
+ "_NDArray_8[ndarray_index(std(_NDArray_7, _OptionalIntOrTuple_1) == NDArray.scalar(Value.int(Int(0))))] = NDArray.scalar(Value.float(Float(1.0)))\n",
+ "_TupleNDArray_1 = svd(\n",
+ " sqrt(asarray(NDArray.scalar(Value.float(Float(1.0) / Float.from_int(asarray(_NDArray_1).shape[Int(0)] - _NDArray_6.shape[Int(0)]))))) * (_NDArray_7 / _NDArray_8), FALSE\n",
+ ")\n",
+ "_Slice_1 = Slice(OptionalInt.none, OptionalInt.some(sum(astype(_TupleNDArray_1[Int(1)] > NDArray.scalar(Value.float(Float(0.0001))), DType.int32)).to_value().to_int))\n",
+ "_NDArray_9 = (_TupleNDArray_1[Int(2)][IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(_Slice_1)) + _MultiAxisIndexKey_1)] / _NDArray_8).T / _TupleNDArray_1[\n",
+ " Int(1)\n",
+ "][IndexKey.slice(_Slice_1)]\n",
+ "_TupleNDArray_2 = svd(\n",
+ " (\n",
+ " sqrt(\n",
+ " (NDArray.scalar(Value.int(asarray(_NDArray_1).shape[Int(0)])) * _NDArray_4)\n",
+ " * NDArray.scalar(Value.float(Float(1.0) / Float.from_int(_NDArray_6.shape[Int(0)] - Int(1))))\n",
+ " )\n",
+ " * (_NDArray_5 - (_NDArray_4 @ _NDArray_5)).T\n",
+ " ).T\n",
+ " @ _NDArray_9,\n",
+ " FALSE,\n",
+ ")\n",
+ "(\n",
+ " (asarray(_NDArray_1) - (_NDArray_4 @ _NDArray_5))\n",
+ " @ (\n",
+ " _NDArray_9\n",
+ " @ _TupleNDArray_2[Int(2)].T[\n",
+ " IndexKey.multi_axis(\n",
+ " _MultiAxisIndexKey_1\n",
+ " + MultiAxisIndexKey(\n",
+ " MultiAxisIndexKeyItem.slice(\n",
+ " Slice(\n",
+ " OptionalInt.none,\n",
+ " OptionalInt.some(\n",
+ " sum(astype(_TupleNDArray_2[Int(1)] > (NDArray.scalar(Value.float(Float(0.0001))) * _TupleNDArray_2[Int(1)][IndexKey.int(Int(0))]), DType.int32))\n",
+ " .to_value()\n",
+ " .to_int\n",
+ " ),\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " ]\n",
+ " )\n",
+ ")[IndexKey.multi_axis(_MultiAxisIndexKey_1 + MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice(OptionalInt.none, OptionalInt.some(_NDArray_6.shape[Int(0)] - Int(1))))))]"
]
- },
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from egglog import EGraph\n",
+ "from egglog.exp.array_api import array_api_module\n",
+ "\n",
+ "with EGraph([array_api_module]) as egraph:\n",
+ " X_r2 = run_lda(X_arr, y_arr)\n",
+ " egraph.display(n_inline_leaves=3, split_primitive_outputs=True)\n",
+ "X_r2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "580da17b",
+ "metadata": {},
+ "source": [
+ "We now have extracted out a program which is semantically equivalent to the original call! One thing you might notice\n",
+ "is that the expression has more types than customary NumPy code. Every object is lifted into a strongly typed `egglog`\n",
+ "class. This is so that when we run optimizations, we know the types of all the objects. It still is compatible with\n",
+ "normal Python objects, but they are [converted](type-promotion) when they are passed as argument.\n",
+ "\n",
+ "## Optimizing our result\n",
+ "\n",
+ "Now that we have the an expression, we can run our rewrite rules to \"optimize\" it, extracting out the lowest cost\n",
+ "(smallest) expression afterword:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "4d3cd4f3",
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 6,
- "id": "9e79f88e",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "_NDArray_1 = NDArray . var ( "X" ) \n",
- "assume_dtype ( _NDArray_1 , DType . float64 ) \n",
- "assume_shape ( _NDArray_1 , TupleInt ( Int ( 1000000 )) + TupleInt ( Int ( 20 ))) \n",
- "assume_isfinite ( _NDArray_1 ) \n",
- "_NDArray_2 = NDArray . var ( "y" ) \n",
- "assume_dtype ( _NDArray_2 , DType . int64 ) \n",
- "assume_shape ( _NDArray_2 , TupleInt ( Int ( 1000000 ))) \n",
- "assume_value_one_of ( _NDArray_2 , TupleValue ( Value . int ( Int ( 0 ))) + TupleValue ( Value . int ( Int ( 1 )))) \n",
- "_NDArray_3 = astype ( \n",
- " NDArray . vector ( TupleValue ( sum ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 0 )))) . to_value ()) + TupleValue ( sum ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 1 )))) . to_value ())), \n",
- " DType . float64 , \n",
- ") / NDArray . scalar ( Value . float ( Float ( 1000000.0 ))) \n",
- "_NDArray_4 = zeros ( TupleInt ( Int ( 2 )) + TupleInt ( Int ( 20 )), OptionalDType . some ( DType . float64 ), OptionalDevice . some ( _NDArray_1 . device )) \n",
- "_MultiAxisIndexKey_1 = MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ())) \n",
- "_IndexKey_1 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 0 ))) + _MultiAxisIndexKey_1 ) \n",
- "_NDArray_5 = _NDArray_1 [ ndarray_index ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 0 ))))] \n",
- "_OptionalIntOrTuple_1 = OptionalIntOrTuple . some ( IntOrTuple . int ( Int ( 0 ))) \n",
- "_NDArray_4 [ _IndexKey_1 ] = sum ( _NDArray_5 , _OptionalIntOrTuple_1 ) / NDArray . scalar ( Value . int ( _NDArray_5 . shape [ Int ( 0 )])) \n",
- "_IndexKey_2 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 1 ))) + _MultiAxisIndexKey_1 ) \n",
- "_NDArray_6 = _NDArray_1 [ ndarray_index ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 1 ))))] \n",
- "_NDArray_4 [ _IndexKey_2 ] = sum ( _NDArray_6 , _OptionalIntOrTuple_1 ) / NDArray . scalar ( Value . int ( _NDArray_6 . shape [ Int ( 0 )])) \n",
- "_NDArray_7 = concat ( TupleNDArray ( _NDArray_5 - _NDArray_4 [ _IndexKey_1 ]) + TupleNDArray ( _NDArray_6 - _NDArray_4 [ _IndexKey_2 ]), OptionalInt . some ( Int ( 0 ))) \n",
- "_NDArray_8 = square ( _NDArray_7 - expand_dims ( sum ( _NDArray_7 , _OptionalIntOrTuple_1 ) / NDArray . scalar ( Value . int ( _NDArray_7 . shape [ Int ( 0 )])))) \n",
- "_NDArray_9 = sqrt ( sum ( _NDArray_8 , _OptionalIntOrTuple_1 ) / NDArray . scalar ( Value . int ( _NDArray_8 . shape [ Int ( 0 )]))) \n",
- "_NDArray_10 = copy ( _NDArray_9 ) \n",
- "_NDArray_10 [ ndarray_index ( _NDArray_9 == NDArray . scalar ( Value . int ( Int ( 0 ))))] = NDArray . scalar ( Value . float ( Float ( 1.0 ))) \n",
- "_TupleNDArray_1 = svd ( sqrt ( NDArray . scalar ( Value . float ( Float ( 1.0 ) / Float . from_int ( Int ( 999998 ))))) * ( _NDArray_7 / _NDArray_10 ), FALSE ) \n",
- "_Slice_1 = Slice ( OptionalInt . none , OptionalInt . some ( sum ( astype ( _TupleNDArray_1 [ Int ( 1 )] > NDArray . scalar ( Value . float ( Float ( 0.0001 ))), DType . int32 )) . to_value () . to_int )) \n",
- "_NDArray_11 = ( _TupleNDArray_1 [ Int ( 2 )][ IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( _Slice_1 )) + _MultiAxisIndexKey_1 )] / _NDArray_10 ) . T / _TupleNDArray_1 [ \n",
- " Int ( 1 ) \n",
- "][ IndexKey . slice ( _Slice_1 )] \n",
- "_TupleNDArray_2 = svd ( \n",
- " ( sqrt (( NDArray . scalar ( Value . int ( Int ( 1000000 ))) * _NDArray_3 ) * NDArray . scalar ( Value . float ( Float ( 1.0 )))) * ( _NDArray_4 - ( _NDArray_3 @ _NDArray_4 )) . T ) . T @ _NDArray_11 , FALSE \n",
- ") \n",
- "( \n",
- " ( _NDArray_1 - ( _NDArray_3 @ _NDArray_4 )) \n",
- " @ ( \n",
- " _NDArray_11 \n",
- " @ _TupleNDArray_2 [ Int ( 2 )] . T [ \n",
- " IndexKey . multi_axis ( \n",
- " _MultiAxisIndexKey_1 \n",
- " + MultiAxisIndexKey ( \n",
- " MultiAxisIndexKeyItem . slice ( \n",
- " Slice ( \n",
- " OptionalInt . none , \n",
- " OptionalInt . some ( \n",
- " sum ( astype ( _TupleNDArray_2 [ Int ( 1 )] > ( NDArray . scalar ( Value . float ( Float ( 0.0001 ))) * _TupleNDArray_2 [ Int ( 1 )][ IndexKey . int ( Int ( 0 ))]), DType . int32 )) \n",
- " . to_value () \n",
- " . to_int \n",
- " ), \n",
- " ) \n",
- " ) \n",
- " ) \n",
- " ) \n",
- " ] \n",
- " ) \n",
- ")[ IndexKey . multi_axis ( _MultiAxisIndexKey_1 + MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ( OptionalInt . none , OptionalInt . some ( Int ( 1 ))))))] \n",
- " \n"
- ],
- "text/latex": [
- "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{X}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}isfinite}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{y}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int64}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{assume\\PYZus{}value\\PYZus{}one\\PYZus{}of}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{=} \\PY{n}{astype}\\PY{p}{(}\n",
- " \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{vector}\\PY{p}{(}\\PY{n}{TupleValue}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,}\n",
- " \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{,}\n",
- "\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1000000.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{=} \\PY{n}{zeros}\\PY{p}{(}\\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalDType}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalDevice}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{o}{.}\\PY{n}{device}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{=} \\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
- "\\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1} \\PY{o}{=} \\PY{n}{OptionalIntOrTuple}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{IntOrTuple}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]} \\PY{o}{=} \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}6} \\PY{o}{=} \\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]} \\PY{o}{=} \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{=} \\PY{n}{concat}\\PY{p}{(}\\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}8} \\PY{o}{=} \\PY{n}{square}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{\\PYZhy{}} \\PY{n}{expand\\PYZus{}dims}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}9} \\PY{o}{=} \\PY{n}{sqrt}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}10} \\PY{o}{=} \\PY{n}{copy}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}9}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}10}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}9} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\\PY{n}{sqrt}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)} \\PY{o}{/} \\PY{n}{Float}\\PY{o}{.}\\PY{n}{from\\PYZus{}int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{999998}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}10}\\PY{p}{)}\\PY{p}{,} \\PY{n}{FALSE}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}Slice\\PYZus{}1} \\PY{o}{=} \\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}int}\\PY{p}{)}\\PY{p}{)}\n",
- "\\PY{n}{\\PYZus{}NDArray\\PYZus{}11} \\PY{o}{=} \\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}10}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{/} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\n",
- " \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\n",
- "\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{]}\n",
- "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\n",
- " \\PY{p}{(}\\PY{n}{sqrt}\\PY{p}{(}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)} \\PY{o}{*} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}11}\\PY{p}{,} \\PY{n}{FALSE}\n",
- "\\PY{p}{)}\n",
- "\\PY{p}{(}\n",
- " \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\\PY{p}{)}\n",
- " \\PY{o}{@} \\PY{p}{(}\n",
- " \\PY{n}{\\PYZus{}NDArray\\PYZus{}11}\n",
- " \\PY{o}{@} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{o}{.}\\PY{n}{T}\\PY{p}{[}\n",
- " \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\n",
- " \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\n",
- " \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\n",
- " \\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\n",
- " \\PY{n}{Slice}\\PY{p}{(}\n",
- " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,}\n",
- " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\n",
- " \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\n",
- " \\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\n",
- " \\PY{o}{.}\\PY{n}{to\\PYZus{}int}\n",
- " \\PY{p}{)}\\PY{p}{,}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{)}\n",
- " \\PY{p}{]}\n",
- " \\PY{p}{)}\n",
- "\\PY{p}{)}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
- "\\end{Verbatim}\n"
- ],
- "text/plain": [
- "_NDArray_1 = NDArray.var(\"X\")\n",
- "assume_dtype(_NDArray_1, DType.float64)\n",
- "assume_shape(_NDArray_1, TupleInt(Int(1000000)) + TupleInt(Int(20)))\n",
- "assume_isfinite(_NDArray_1)\n",
- "_NDArray_2 = NDArray.var(\"y\")\n",
- "assume_dtype(_NDArray_2, DType.int64)\n",
- "assume_shape(_NDArray_2, TupleInt(Int(1000000)))\n",
- "assume_value_one_of(_NDArray_2, TupleValue(Value.int(Int(0))) + TupleValue(Value.int(Int(1))))\n",
- "_NDArray_3 = astype(\n",
- " NDArray.vector(TupleValue(sum(_NDArray_2 == NDArray.scalar(Value.int(Int(0)))).to_value()) + TupleValue(sum(_NDArray_2 == NDArray.scalar(Value.int(Int(1)))).to_value())),\n",
- " DType.float64,\n",
- ") / NDArray.scalar(Value.float(Float(1000000.0)))\n",
- "_NDArray_4 = zeros(TupleInt(Int(2)) + TupleInt(Int(20)), OptionalDType.some(DType.float64), OptionalDevice.some(_NDArray_1.device))\n",
- "_MultiAxisIndexKey_1 = MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice()))\n",
- "_IndexKey_1 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(0))) + _MultiAxisIndexKey_1)\n",
- "_NDArray_5 = _NDArray_1[ndarray_index(_NDArray_2 == NDArray.scalar(Value.int(Int(0))))]\n",
- "_OptionalIntOrTuple_1 = OptionalIntOrTuple.some(IntOrTuple.int(Int(0)))\n",
- "_NDArray_4[_IndexKey_1] = sum(_NDArray_5, _OptionalIntOrTuple_1) / NDArray.scalar(Value.int(_NDArray_5.shape[Int(0)]))\n",
- "_IndexKey_2 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(1))) + _MultiAxisIndexKey_1)\n",
- "_NDArray_6 = _NDArray_1[ndarray_index(_NDArray_2 == NDArray.scalar(Value.int(Int(1))))]\n",
- "_NDArray_4[_IndexKey_2] = sum(_NDArray_6, _OptionalIntOrTuple_1) / NDArray.scalar(Value.int(_NDArray_6.shape[Int(0)]))\n",
- "_NDArray_7 = concat(TupleNDArray(_NDArray_5 - _NDArray_4[_IndexKey_1]) + TupleNDArray(_NDArray_6 - _NDArray_4[_IndexKey_2]), OptionalInt.some(Int(0)))\n",
- "_NDArray_8 = square(_NDArray_7 - expand_dims(sum(_NDArray_7, _OptionalIntOrTuple_1) / NDArray.scalar(Value.int(_NDArray_7.shape[Int(0)]))))\n",
- "_NDArray_9 = sqrt(sum(_NDArray_8, _OptionalIntOrTuple_1) / NDArray.scalar(Value.int(_NDArray_8.shape[Int(0)])))\n",
- "_NDArray_10 = copy(_NDArray_9)\n",
- "_NDArray_10[ndarray_index(_NDArray_9 == NDArray.scalar(Value.int(Int(0))))] = NDArray.scalar(Value.float(Float(1.0)))\n",
- "_TupleNDArray_1 = svd(sqrt(NDArray.scalar(Value.float(Float(1.0) / Float.from_int(Int(999998))))) * (_NDArray_7 / _NDArray_10), FALSE)\n",
- "_Slice_1 = Slice(OptionalInt.none, OptionalInt.some(sum(astype(_TupleNDArray_1[Int(1)] > NDArray.scalar(Value.float(Float(0.0001))), DType.int32)).to_value().to_int))\n",
- "_NDArray_11 = (_TupleNDArray_1[Int(2)][IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(_Slice_1)) + _MultiAxisIndexKey_1)] / _NDArray_10).T / _TupleNDArray_1[\n",
- " Int(1)\n",
- "][IndexKey.slice(_Slice_1)]\n",
- "_TupleNDArray_2 = svd(\n",
- " (sqrt((NDArray.scalar(Value.int(Int(1000000))) * _NDArray_3) * NDArray.scalar(Value.float(Float(1.0)))) * (_NDArray_4 - (_NDArray_3 @ _NDArray_4)).T).T @ _NDArray_11, FALSE\n",
- ")\n",
- "(\n",
- " (_NDArray_1 - (_NDArray_3 @ _NDArray_4))\n",
- " @ (\n",
- " _NDArray_11\n",
- " @ _TupleNDArray_2[Int(2)].T[\n",
- " IndexKey.multi_axis(\n",
- " _MultiAxisIndexKey_1\n",
- " + MultiAxisIndexKey(\n",
- " MultiAxisIndexKeyItem.slice(\n",
- " Slice(\n",
- " OptionalInt.none,\n",
- " OptionalInt.some(\n",
- " sum(astype(_TupleNDArray_2[Int(1)] > (NDArray.scalar(Value.float(Float(0.0001))) * _TupleNDArray_2[Int(1)][IndexKey.int(Int(0))]), DType.int32))\n",
- " .to_value()\n",
- " .to_int\n",
- " ),\n",
- " )\n",
- " )\n",
- " )\n",
- " )\n",
- " ]\n",
- " )\n",
- ")[IndexKey.multi_axis(_MultiAxisIndexKey_1 + MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice(OptionalInt.none, OptionalInt.some(Int(1))))))]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
+ "data": {
+ "text/html": [
+ "_NDArray_1 = NDArray . var ( "X" ) \n",
+ "assume_dtype ( _NDArray_1 , DType . float64 ) \n",
+ "assume_shape ( _NDArray_1 , TupleInt ( Int ( 1000000 )) + TupleInt ( Int ( 20 ))) \n",
+ "assume_isfinite ( _NDArray_1 ) \n",
+ "_NDArray_2 = NDArray . var ( "y" ) \n",
+ "assume_dtype ( _NDArray_2 , DType . int64 ) \n",
+ "assume_shape ( _NDArray_2 , TupleInt ( Int ( 1000000 ))) \n",
+ "assume_value_one_of ( _NDArray_2 , TupleValue ( Value . int ( Int ( 0 ))) + TupleValue ( Value . int ( Int ( 1 )))) \n",
+ "_NDArray_3 = astype ( unique_counts ( _NDArray_2 )[ Int ( 1 )], DType . float64 ) / NDArray . scalar ( Value . float ( Float ( 1000000.0 ))) \n",
+ "_NDArray_4 = zeros ( TupleInt ( Int ( 2 )) + TupleInt ( Int ( 20 )), OptionalDType . some ( DType . float64 ), OptionalDevice . some ( _NDArray_1 . device )) \n",
+ "_MultiAxisIndexKey_1 = MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ())) \n",
+ "_IndexKey_1 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 0 ))) + _MultiAxisIndexKey_1 ) \n",
+ "_OptionalIntOrTuple_1 = OptionalIntOrTuple . some ( IntOrTuple . int ( Int ( 0 ))) \n",
+ "_NDArray_4 [ _IndexKey_1 ] = mean ( _NDArray_1 [ ndarray_index ( unique_inverse ( _NDArray_2 )[ Int ( 1 )] == NDArray . scalar ( Value . int ( Int ( 0 ))))], _OptionalIntOrTuple_1 ) \n",
+ "_IndexKey_2 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 1 ))) + _MultiAxisIndexKey_1 ) \n",
+ "_NDArray_4 [ _IndexKey_2 ] = mean ( _NDArray_1 [ ndarray_index ( unique_inverse ( _NDArray_2 )[ Int ( 1 )] == NDArray . scalar ( Value . int ( Int ( 1 ))))], _OptionalIntOrTuple_1 ) \n",
+ "_NDArray_5 = concat ( \n",
+ " TupleNDArray ( _NDArray_1 [ ndarray_index ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 0 ))))] - _NDArray_4 [ _IndexKey_1 ]) \n",
+ " + TupleNDArray ( _NDArray_1 [ ndarray_index ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 1 ))))] - _NDArray_4 [ _IndexKey_2 ]), \n",
+ " OptionalInt . some ( Int ( 0 )), \n",
+ ") \n",
+ "_NDArray_6 = std ( _NDArray_5 , _OptionalIntOrTuple_1 ) \n",
+ "_NDArray_6 [ ndarray_index ( std ( _NDArray_5 , _OptionalIntOrTuple_1 ) == NDArray . scalar ( Value . int ( Int ( 0 ))))] = NDArray . scalar ( Value . float ( Float ( 1.0 ))) \n",
+ "_TupleNDArray_1 = svd ( sqrt ( NDArray . scalar ( Value . float ( Float ( 1.0 ) / Float . from_int ( Int ( 999998 ))))) * ( _NDArray_5 / _NDArray_6 ), FALSE ) \n",
+ "_Slice_1 = Slice ( OptionalInt . none , OptionalInt . some ( sum ( astype ( _TupleNDArray_1 [ Int ( 1 )] > NDArray . scalar ( Value . float ( Float ( 0.0001 ))), DType . int32 )) . to_value () . to_int )) \n",
+ "_NDArray_7 = ( _TupleNDArray_1 [ Int ( 2 )][ IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( _Slice_1 )) + _MultiAxisIndexKey_1 )] / _NDArray_6 ) . T / _TupleNDArray_1 [ \n",
+ " Int ( 1 ) \n",
+ "][ IndexKey . slice ( _Slice_1 )] \n",
+ "_TupleNDArray_2 = svd ( \n",
+ " ( sqrt (( NDArray . scalar ( Value . int ( Int ( 1000000 ))) * _NDArray_3 ) * NDArray . scalar ( Value . float ( Float ( 1.0 )))) * ( _NDArray_4 - ( _NDArray_3 @ _NDArray_4 )) . T ) . T @ _NDArray_7 , FALSE \n",
+ ") \n",
+ "( \n",
+ " ( _NDArray_1 - ( _NDArray_3 @ _NDArray_4 )) \n",
+ " @ ( \n",
+ " _NDArray_7 \n",
+ " @ _TupleNDArray_2 [ Int ( 2 )] . T [ \n",
+ " IndexKey . multi_axis ( \n",
+ " _MultiAxisIndexKey_1 \n",
+ " + MultiAxisIndexKey ( \n",
+ " MultiAxisIndexKeyItem . slice ( \n",
+ " Slice ( \n",
+ " OptionalInt . none , \n",
+ " OptionalInt . some ( \n",
+ " sum ( astype ( _TupleNDArray_2 [ Int ( 1 )] > ( NDArray . scalar ( Value . float ( Float ( 0.0001 ))) * _TupleNDArray_2 [ Int ( 1 )][ IndexKey . int ( Int ( 0 ))]), DType . int32 )) \n",
+ " . to_value () \n",
+ " . to_int \n",
+ " ), \n",
+ " ) \n",
+ " ) \n",
+ " ) \n",
+ " ) \n",
+ " ] \n",
+ " ) \n",
+ ")[ IndexKey . multi_axis ( _MultiAxisIndexKey_1 + MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ( OptionalInt . none , OptionalInt . some ( Int ( 1 ))))))] \n",
+ " \n"
],
- "source": [
- "from egglog.exp.array_api_numba import array_api_numba_module\n",
- "\n",
- "egraph = EGraph([array_api_numba_module])\n",
- "egraph.register(X_r2_optimized)\n",
- "egraph.run(10000)\n",
- "X_r2_numba = egraph.extract(X_r2_optimized)\n",
- "X_r2_numba"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "969490bb",
- "metadata": {},
- "source": [
- "## Compiling back to Python source\n",
- "\n",
- "Now we finally have a version that we could run with Numba! However, this isn't in NumPy code. What Numba needs\n",
- "is a function that uses `numpy`, not our typed dialect.\n",
- "\n",
- "So we use another module that provides a translation of all our methods into Python strings. The rules in it look like this:\n",
- "\n",
- "```python\n",
- "# the sqrt of an array should use the `np.sqrt` function and be assigned to its own variable, so it can be reused\n",
- "rewrite(ndarray_program(sqrt(x))).to((Program(\"np.sqrt(\") + ndarray_program(x) + \")\").assign())\n",
- "\n",
- "# To compile a setitem call, we first compile the source, assign it to a variable, then add an assignment statement\n",
- "mod_x = copy(x)\n",
- "mod_x[idx] = y\n",
- "assigned_x = ndarray_program(x).assign()\n",
- "yield rewrite(ndarray_program(mod_x)).to(\n",
- " assigned_x.statement(assigned_x + \"[\" + index_key_program(idx) + \"] = \" + ndarray_program(y))\n",
- ")\n",
- "```\n",
- "\n",
- "We pull in all those rewrite rules from the [`egglog.exp.array_api_program_gen` module](https://github.com/egraphs-good/egglog-python/blob/main/python/egglog/exp/array_api_program_gen.py).\n",
- "They depend on another module, [`egglog.exp.program_gen` module](https://github.com/egraphs-good/egglog-python/blob/main/python/egglog/exp/program_gen.py), which provides generic translations\n",
- "from expressions and statements into strings.\n",
- "\n",
- "We can run these rules to get out a Python function object:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "3aeae673",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "def __fn(X, y):\n",
- " assert X.dtype == np.dtype(np.float64)\n",
- " assert X.shape == (1000000, 20,)\n",
- " assert np.all(np.isfinite(X))\n",
- " assert y.dtype == np.dtype(np.int64)\n",
- " assert y.shape == (1000000,)\n",
- " assert set(np.unique(y)) == set((0, 1,))\n",
- " _0 = y == np.array(0)\n",
- " _1 = np.sum(_0)\n",
- " _2 = y == np.array(1)\n",
- " _3 = np.sum(_2)\n",
- " _4 = np.array((_1, _3,)).astype(np.dtype(np.float64))\n",
- " _5 = _4 / np.array(1000000.0)\n",
- " _6 = np.zeros((2, 20,), dtype=np.dtype(np.float64))\n",
- " _7 = np.sum(X[_0], axis=0)\n",
- " _8 = _7 / np.array(X[_0].shape[0])\n",
- " _6[0, :] = _8\n",
- " _9 = np.sum(X[_2], axis=0)\n",
- " _10 = _9 / np.array(X[_2].shape[0])\n",
- " _6[1, :] = _10\n",
- " _11 = _5 @ _6\n",
- " _12 = X - _11\n",
- " _13 = np.sqrt(np.array((1.0 / 999998)))\n",
- " _14 = X[_0] - _6[0, :]\n",
- " _15 = X[_2] - _6[1, :]\n",
- " _16 = np.concatenate((_14, _15,), axis=0)\n",
- " _17 = np.sum(_16, axis=0)\n",
- " _18 = _17 / np.array(_16.shape[0])\n",
- " _19 = np.expand_dims(_18, 0)\n",
- " _20 = _16 - _19\n",
- " _21 = np.square(_20)\n",
- " _22 = np.sum(_21, axis=0)\n",
- " _23 = _22 / np.array(_21.shape[0])\n",
- " _24 = np.sqrt(_23)\n",
- " _25 = _24 == np.array(0)\n",
- " _24[_25] = np.array(1.0)\n",
- " _26 = _16 / _24\n",
- " _27 = _13 * _26\n",
- " _28 = np.linalg.svd(_27, full_matrices=False)\n",
- " _29 = _28[1] > np.array(0.0001)\n",
- " _30 = _29.astype(np.dtype(np.int32))\n",
- " _31 = np.sum(_30)\n",
- " _32 = _28[2][:_31, :] / _24\n",
- " _33 = _32.T / _28[1][:_31]\n",
- " _34 = np.array(1000000) * _5\n",
- " _35 = _34 * np.array(1.0)\n",
- " _36 = np.sqrt(_35)\n",
- " _37 = _6 - _11\n",
- " _38 = _36 * _37.T\n",
- " _39 = _38.T @ _33\n",
- " _40 = np.linalg.svd(_39, full_matrices=False)\n",
- " _41 = np.array(0.0001) * _40[1][0]\n",
- " _42 = _40[1] > _41\n",
- " _43 = _42.astype(np.dtype(np.int32))\n",
- " _44 = np.sum(_43)\n",
- " _45 = _33 @ _40[2].T[:, :_44]\n",
- " _46 = _12 @ _45\n",
- " return _46[:, :1]\n",
- "\n"
- ]
- }
+ "text/latex": [
+ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{X}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}isfinite}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{y}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int64}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}value\\PYZus{}one\\PYZus{}of}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{=} \\PY{n}{astype}\\PY{p}{(}\\PY{n}{unique\\PYZus{}counts}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1000000.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{=} \\PY{n}{zeros}\\PY{p}{(}\\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalDType}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalDevice}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{o}{.}\\PY{n}{device}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1} \\PY{o}{=} \\PY{n}{OptionalIntOrTuple}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{IntOrTuple}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]} \\PY{o}{=} \\PY{n}{mean}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]} \\PY{o}{=} \\PY{n}{mean}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{unique\\PYZus{}inverse}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{)}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{=} \\PY{n}{concat}\\PY{p}{(}\n",
+ " \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]}\\PY{p}{)}\n",
+ " \\PY{o}{+} \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,}\n",
+ " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,}\n",
+ "\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}6} \\PY{o}{=} \\PY{n}{std}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{std}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\\PY{n}{sqrt}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)} \\PY{o}{/} \\PY{n}{Float}\\PY{o}{.}\\PY{n}{from\\PYZus{}int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{999998}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{)}\\PY{p}{,} \\PY{n}{FALSE}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}Slice\\PYZus{}1} \\PY{o}{=} \\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}int}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{=} \\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{/} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\n",
+ " \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\n",
+ "\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{]}\n",
+ "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\n",
+ " \\PY{p}{(}\\PY{n}{sqrt}\\PY{p}{(}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)} \\PY{o}{*} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{p}{,} \\PY{n}{FALSE}\n",
+ "\\PY{p}{)}\n",
+ "\\PY{p}{(}\n",
+ " \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\\PY{p}{)}\n",
+ " \\PY{o}{@} \\PY{p}{(}\n",
+ " \\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\n",
+ " \\PY{o}{@} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{o}{.}\\PY{n}{T}\\PY{p}{[}\n",
+ " \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\n",
+ " \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\n",
+ " \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\n",
+ " \\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\n",
+ " \\PY{n}{Slice}\\PY{p}{(}\n",
+ " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,}\n",
+ " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\n",
+ " \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\n",
+ " \\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\n",
+ " \\PY{o}{.}\\PY{n}{to\\PYZus{}int}\n",
+ " \\PY{p}{)}\\PY{p}{,}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{]}\n",
+ " \\PY{p}{)}\n",
+ "\\PY{p}{)}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
+ "\\end{Verbatim}\n"
],
- "source": [
- "from egglog.exp.array_api_program_gen import (\n",
- " ndarray_function_two,\n",
- " array_api_module_string,\n",
- ")\n",
- "\n",
- "egraph = EGraph([array_api_module_string])\n",
- "fn_program = ndarray_function_two(X_r2_numba, X_orig, y_orig)\n",
- "egraph.register(fn_program)\n",
- "egraph.run(10000)\n",
- "fn = egraph.load_object(egraph.extract(fn_program.py_object))\n",
- "import inspect\n",
- "\n",
- "print(inspect.getsource(fn))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6e0405c8",
- "metadata": {},
- "source": [
- "We can verify that the function gives the same result:\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "a807d66c",
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "\n",
- "assert np.allclose(run_lda(X_np, y_np), fn(X_np, y_np))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b2a3f1ed",
- "metadata": {},
- "source": [
- "Although it isn't the prettiest, we can see that it has only emitted each expression once, for common subexpression\n",
- "elimination, and preserves the \"imperative\" aspects of setitem.\n",
- "\n",
- "## Compiling to Numba\n",
- "\n",
- "Now we finally have a function we can run with numba:\n"
+ "text/plain": [
+ "_NDArray_1 = NDArray.var(\"X\")\n",
+ "assume_dtype(_NDArray_1, DType.float64)\n",
+ "assume_shape(_NDArray_1, TupleInt(Int(1000000)) + TupleInt(Int(20)))\n",
+ "assume_isfinite(_NDArray_1)\n",
+ "_NDArray_2 = NDArray.var(\"y\")\n",
+ "assume_dtype(_NDArray_2, DType.int64)\n",
+ "assume_shape(_NDArray_2, TupleInt(Int(1000000)))\n",
+ "assume_value_one_of(_NDArray_2, TupleValue(Value.int(Int(0))) + TupleValue(Value.int(Int(1))))\n",
+ "_NDArray_3 = astype(unique_counts(_NDArray_2)[Int(1)], DType.float64) / NDArray.scalar(Value.float(Float(1000000.0)))\n",
+ "_NDArray_4 = zeros(TupleInt(Int(2)) + TupleInt(Int(20)), OptionalDType.some(DType.float64), OptionalDevice.some(_NDArray_1.device))\n",
+ "_MultiAxisIndexKey_1 = MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice()))\n",
+ "_IndexKey_1 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(0))) + _MultiAxisIndexKey_1)\n",
+ "_OptionalIntOrTuple_1 = OptionalIntOrTuple.some(IntOrTuple.int(Int(0)))\n",
+ "_NDArray_4[_IndexKey_1] = mean(_NDArray_1[ndarray_index(unique_inverse(_NDArray_2)[Int(1)] == NDArray.scalar(Value.int(Int(0))))], _OptionalIntOrTuple_1)\n",
+ "_IndexKey_2 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(1))) + _MultiAxisIndexKey_1)\n",
+ "_NDArray_4[_IndexKey_2] = mean(_NDArray_1[ndarray_index(unique_inverse(_NDArray_2)[Int(1)] == NDArray.scalar(Value.int(Int(1))))], _OptionalIntOrTuple_1)\n",
+ "_NDArray_5 = concat(\n",
+ " TupleNDArray(_NDArray_1[ndarray_index(_NDArray_2 == NDArray.scalar(Value.int(Int(0))))] - _NDArray_4[_IndexKey_1])\n",
+ " + TupleNDArray(_NDArray_1[ndarray_index(_NDArray_2 == NDArray.scalar(Value.int(Int(1))))] - _NDArray_4[_IndexKey_2]),\n",
+ " OptionalInt.some(Int(0)),\n",
+ ")\n",
+ "_NDArray_6 = std(_NDArray_5, _OptionalIntOrTuple_1)\n",
+ "_NDArray_6[ndarray_index(std(_NDArray_5, _OptionalIntOrTuple_1) == NDArray.scalar(Value.int(Int(0))))] = NDArray.scalar(Value.float(Float(1.0)))\n",
+ "_TupleNDArray_1 = svd(sqrt(NDArray.scalar(Value.float(Float(1.0) / Float.from_int(Int(999998))))) * (_NDArray_5 / _NDArray_6), FALSE)\n",
+ "_Slice_1 = Slice(OptionalInt.none, OptionalInt.some(sum(astype(_TupleNDArray_1[Int(1)] > NDArray.scalar(Value.float(Float(0.0001))), DType.int32)).to_value().to_int))\n",
+ "_NDArray_7 = (_TupleNDArray_1[Int(2)][IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(_Slice_1)) + _MultiAxisIndexKey_1)] / _NDArray_6).T / _TupleNDArray_1[\n",
+ " Int(1)\n",
+ "][IndexKey.slice(_Slice_1)]\n",
+ "_TupleNDArray_2 = svd(\n",
+ " (sqrt((NDArray.scalar(Value.int(Int(1000000))) * _NDArray_3) * NDArray.scalar(Value.float(Float(1.0)))) * (_NDArray_4 - (_NDArray_3 @ _NDArray_4)).T).T @ _NDArray_7, FALSE\n",
+ ")\n",
+ "(\n",
+ " (_NDArray_1 - (_NDArray_3 @ _NDArray_4))\n",
+ " @ (\n",
+ " _NDArray_7\n",
+ " @ _TupleNDArray_2[Int(2)].T[\n",
+ " IndexKey.multi_axis(\n",
+ " _MultiAxisIndexKey_1\n",
+ " + MultiAxisIndexKey(\n",
+ " MultiAxisIndexKeyItem.slice(\n",
+ " Slice(\n",
+ " OptionalInt.none,\n",
+ " OptionalInt.some(\n",
+ " sum(astype(_TupleNDArray_2[Int(1)] > (NDArray.scalar(Value.float(Float(0.0001))) * _TupleNDArray_2[Int(1)][IndexKey.int(Int(0))]), DType.int32))\n",
+ " .to_value()\n",
+ " .to_int\n",
+ " ),\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " ]\n",
+ " )\n",
+ ")[IndexKey.multi_axis(_MultiAxisIndexKey_1 + MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice(OptionalInt.none, OptionalInt.some(Int(1))))))]"
]
- },
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "egraph = EGraph([array_api_module])\n",
+ "egraph.register(X_r2)\n",
+ "egraph.run(10000)\n",
+ "X_r2_optimized = egraph.extract(X_r2)\n",
+ "X_r2_optimized"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "30ea4ea4",
+ "metadata": {},
+ "source": [
+ "We see that for example expressions that referenced the shape of our input arrays have been resolved to their\n",
+ "values.\n",
+ "\n",
+ "We can also take a look at the e-graph itself, even though it's quite large, where we can see that equivalent\n",
+ "expressions show up in the same group, or \"e-class\":\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "6417b9e5",
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 9,
- "id": "39a69f23",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/var/folders/xn/05ktz3056kqd9n8frgd6236h0000gn/T/egglog-9e61d62c-d17d-495b-b8db-f1eb3b38dcbb.py:56: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (Array(float64, 2, 'C', False, aligned=True), Array(float64, 2, 'A', False, aligned=True))\n",
- " _45 = _33 @ _40[2].T[:, :_44]\n"
- ]
- }
+ "data": {
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ "outer_cluster_32 \n",
+ " \n",
+ "\n",
+ "cluster_32 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_48 \n",
+ " \n",
+ "\n",
+ "cluster_48 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_92 \n",
+ " \n",
+ "\n",
+ "cluster_92 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_155 \n",
+ " \n",
+ "\n",
+ "cluster_155 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_34 \n",
+ " \n",
+ "\n",
+ "cluster_34 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_91 \n",
+ " \n",
+ "\n",
+ "cluster_91 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_72 \n",
+ " \n",
+ "\n",
+ "cluster_72 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_190 \n",
+ " \n",
+ "\n",
+ "cluster_190 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_147 \n",
+ " \n",
+ "\n",
+ "cluster_147 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_58 \n",
+ " \n",
+ "\n",
+ "cluster_58 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_62 \n",
+ " \n",
+ "\n",
+ "cluster_62 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_143 \n",
+ " \n",
+ "\n",
+ "cluster_143 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_75 \n",
+ " \n",
+ "\n",
+ "cluster_75 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_118 \n",
+ " \n",
+ "\n",
+ "cluster_118 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_105 \n",
+ " \n",
+ "\n",
+ "cluster_105 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_71 \n",
+ " \n",
+ "\n",
+ "cluster_71 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_141 \n",
+ " \n",
+ "\n",
+ "cluster_141 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_142 \n",
+ " \n",
+ "\n",
+ "cluster_142 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_52 \n",
+ " \n",
+ "\n",
+ "cluster_52 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_56 \n",
+ " \n",
+ "\n",
+ "cluster_56 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_188 \n",
+ " \n",
+ "\n",
+ "cluster_188 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_69 \n",
+ " \n",
+ "\n",
+ "cluster_69 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_178 \n",
+ " \n",
+ "\n",
+ "cluster_178 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_140 \n",
+ " \n",
+ "\n",
+ "cluster_140 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_187 \n",
+ " \n",
+ "\n",
+ "cluster_187 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_95 \n",
+ " \n",
+ "\n",
+ "cluster_95 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_12 \n",
+ " \n",
+ "\n",
+ "cluster_12 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_102 \n",
+ " \n",
+ "\n",
+ "cluster_102 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_67 \n",
+ " \n",
+ "\n",
+ "cluster_67 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_115 \n",
+ " \n",
+ "\n",
+ "cluster_115 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_63 \n",
+ " \n",
+ "\n",
+ "cluster_63 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_127 \n",
+ " \n",
+ "\n",
+ "cluster_127 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_146 \n",
+ " \n",
+ "\n",
+ "cluster_146 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_109 \n",
+ " \n",
+ "\n",
+ "cluster_109 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_191 \n",
+ " \n",
+ "\n",
+ "cluster_191 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_37 \n",
+ " \n",
+ "\n",
+ "cluster_37 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_79 \n",
+ " \n",
+ "\n",
+ "cluster_79 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_122 \n",
+ " \n",
+ "\n",
+ "cluster_122 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_163 \n",
+ " \n",
+ "\n",
+ "cluster_163 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_145 \n",
+ " \n",
+ "\n",
+ "cluster_145 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_106 \n",
+ " \n",
+ "\n",
+ "cluster_106 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_2 \n",
+ " \n",
+ "\n",
+ "cluster_2 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_149 \n",
+ " \n",
+ "\n",
+ "cluster_149 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_126 \n",
+ " \n",
+ "\n",
+ "cluster_126 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_110 \n",
+ " \n",
+ "\n",
+ "cluster_110 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_131 \n",
+ " \n",
+ "\n",
+ "cluster_131 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_171 \n",
+ " \n",
+ "\n",
+ "cluster_171 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_99 \n",
+ " \n",
+ "\n",
+ "cluster_99 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_135 \n",
+ " \n",
+ "\n",
+ "cluster_135 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_182 \n",
+ " \n",
+ "\n",
+ "cluster_182 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_8 \n",
+ " \n",
+ "\n",
+ "cluster_8 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_78 \n",
+ " \n",
+ "\n",
+ "cluster_78 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_167 \n",
+ " \n",
+ "\n",
+ "cluster_167 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_172 \n",
+ " \n",
+ "\n",
+ "cluster_172 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_169 \n",
+ " \n",
+ "\n",
+ "cluster_169 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_36 \n",
+ " \n",
+ "\n",
+ "cluster_36 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_76 \n",
+ " \n",
+ "\n",
+ "cluster_76 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_61 \n",
+ " \n",
+ "\n",
+ "cluster_61 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_157 \n",
+ " \n",
+ "\n",
+ "cluster_157 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_173 \n",
+ " \n",
+ "\n",
+ "cluster_173 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_164 \n",
+ " \n",
+ "\n",
+ "cluster_164 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_33 \n",
+ " \n",
+ "\n",
+ "cluster_33 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_83 \n",
+ " \n",
+ "\n",
+ "cluster_83 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_116 \n",
+ " \n",
+ "\n",
+ "cluster_116 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_168 \n",
+ " \n",
+ "\n",
+ "cluster_168 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_100 \n",
+ " \n",
+ "\n",
+ "cluster_100 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_108 \n",
+ " \n",
+ "\n",
+ "cluster_108 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_181 \n",
+ " \n",
+ "\n",
+ "cluster_181 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_90 \n",
+ " \n",
+ "\n",
+ "cluster_90 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_153 \n",
+ " \n",
+ "\n",
+ "cluster_153 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_175 \n",
+ " \n",
+ "\n",
+ "cluster_175 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_137 \n",
+ " \n",
+ "\n",
+ "cluster_137 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_89 \n",
+ " \n",
+ "\n",
+ "cluster_89 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_82 \n",
+ " \n",
+ "\n",
+ "cluster_82 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_44 \n",
+ " \n",
+ "\n",
+ "cluster_44 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_180 \n",
+ " \n",
+ "\n",
+ "cluster_180 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_189 \n",
+ " \n",
+ "\n",
+ "cluster_189 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_179 \n",
+ " \n",
+ "\n",
+ "cluster_179 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_70 \n",
+ " \n",
+ "\n",
+ "cluster_70 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_57 \n",
+ " \n",
+ "\n",
+ "cluster_57 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_121 \n",
+ " \n",
+ "\n",
+ "cluster_121 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_31 \n",
+ " \n",
+ "\n",
+ "cluster_31 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_123 \n",
+ " \n",
+ "\n",
+ "cluster_123 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_68 \n",
+ " \n",
+ "\n",
+ "cluster_68 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_50 \n",
+ " \n",
+ "\n",
+ "cluster_50 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_151 \n",
+ " \n",
+ "\n",
+ "cluster_151 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_77 \n",
+ " \n",
+ "\n",
+ "cluster_77 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_74 \n",
+ " \n",
+ "\n",
+ "cluster_74 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_101 \n",
+ " \n",
+ "\n",
+ "cluster_101 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_152 \n",
+ " \n",
+ "\n",
+ "cluster_152 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_130 \n",
+ " \n",
+ "\n",
+ "cluster_130 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_161 \n",
+ " \n",
+ "\n",
+ "cluster_161 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_148 \n",
+ " \n",
+ "\n",
+ "cluster_148 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_80 \n",
+ " \n",
+ "\n",
+ "cluster_80 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_111 \n",
+ " \n",
+ "\n",
+ "cluster_111 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_183 \n",
+ " \n",
+ "\n",
+ "cluster_183 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_59 \n",
+ " \n",
+ "\n",
+ "cluster_59 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_159 \n",
+ " \n",
+ "\n",
+ "cluster_159 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_103 \n",
+ " \n",
+ "\n",
+ "cluster_103 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_117 \n",
+ " \n",
+ "\n",
+ "cluster_117 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_158 \n",
+ " \n",
+ "\n",
+ "cluster_158 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_87 \n",
+ " \n",
+ "\n",
+ "cluster_87 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_96 \n",
+ " \n",
+ "\n",
+ "cluster_96 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_98 \n",
+ " \n",
+ "\n",
+ "cluster_98 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_166 \n",
+ " \n",
+ "\n",
+ "cluster_166 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_133 \n",
+ " \n",
+ "\n",
+ "cluster_133 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_184 \n",
+ " \n",
+ "\n",
+ "cluster_184 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_107 \n",
+ " \n",
+ "\n",
+ "cluster_107 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_162 \n",
+ " \n",
+ "\n",
+ "cluster_162 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_144 \n",
+ " \n",
+ "\n",
+ "cluster_144 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_170 \n",
+ " \n",
+ "\n",
+ "cluster_170 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_160 \n",
+ " \n",
+ "\n",
+ "cluster_160 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_16 \n",
+ " \n",
+ "\n",
+ "cluster_16 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_47 \n",
+ " \n",
+ "\n",
+ "cluster_47 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_49 \n",
+ " \n",
+ "\n",
+ "cluster_49 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_138 \n",
+ " \n",
+ "\n",
+ "cluster_138 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_185 \n",
+ " \n",
+ "\n",
+ "cluster_185 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_176 \n",
+ " \n",
+ "\n",
+ "cluster_176 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_65 \n",
+ " \n",
+ "\n",
+ "cluster_65 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_Int_to_py-7586556743040283621-value \n",
+ " \n",
+ "\n",
+ "cluster_Int_to_py-7586556743040283621-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_Int_to_py-11951456526892775522-value \n",
+ " \n",
+ "\n",
+ "cluster_Int_to_py-11951456526892775522-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_Int_to_py-6079675520328773069-value \n",
+ " \n",
+ "\n",
+ "cluster_Int_to_py-6079675520328773069-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_Int_to_py-103947256882385308-value \n",
+ " \n",
+ "\n",
+ "cluster_Int_to_py-103947256882385308-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_Int_to_py-5092353580987650850-value \n",
+ " \n",
+ "\n",
+ "cluster_Int_to_py-5092353580987650850-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_Int_to_py-1870696621799859130-value \n",
+ " \n",
+ "\n",
+ "cluster_Int_to_py-1870696621799859130-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_Boolean_to_py-155920885323577962-value \n",
+ " \n",
+ "\n",
+ "cluster_Boolean_to_py-155920885323577962-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_Int_to_py-12938778466233897741-value \n",
+ " \n",
+ "\n",
+ "cluster_Int_to_py-12938778466233897741-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_139 \n",
+ " \n",
+ "\n",
+ "cluster_139 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_177 \n",
+ " \n",
+ "\n",
+ "cluster_177 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_186 \n",
+ " \n",
+ "\n",
+ "cluster_186 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_43 \n",
+ " \n",
+ "\n",
+ "cluster_43 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_203 \n",
+ " \n",
+ "\n",
+ "cluster_203 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_46 \n",
+ " \n",
+ "\n",
+ "cluster_46 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_212 \n",
+ " \n",
+ "\n",
+ "cluster_212 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_42 \n",
+ " \n",
+ "\n",
+ "cluster_42 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_45 \n",
+ " \n",
+ "\n",
+ "cluster_45 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_38 \n",
+ " \n",
+ "\n",
+ "cluster_38 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_104 \n",
+ " \n",
+ "\n",
+ "cluster_104 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_112 \n",
+ " \n",
+ "\n",
+ "cluster_112 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_113 \n",
+ " \n",
+ "\n",
+ "cluster_113 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_165 \n",
+ " \n",
+ "\n",
+ "cluster_165 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_85 \n",
+ " \n",
+ "\n",
+ "cluster_85 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_124 \n",
+ " \n",
+ "\n",
+ "cluster_124 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_30 \n",
+ " \n",
+ "\n",
+ "cluster_30 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_19 \n",
+ " \n",
+ "\n",
+ "cluster_19 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_201 \n",
+ " \n",
+ "\n",
+ "cluster_201 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_198 \n",
+ " \n",
+ "\n",
+ "cluster_198 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_22 \n",
+ " \n",
+ "\n",
+ "cluster_22 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_greater_zero-1143242824664700181-value \n",
+ " \n",
+ "\n",
+ "cluster_greater_zero-1143242824664700181-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_greater_zero-13770179520251441998-value \n",
+ " \n",
+ "\n",
+ "cluster_greater_zero-13770179520251441998-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_greater_zero-14757501459592564217-value \n",
+ " \n",
+ "\n",
+ "cluster_greater_zero-14757501459592564217-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_greater_zero-2598150418935018079-value \n",
+ " \n",
+ "\n",
+ "cluster_greater_zero-2598150418935018079-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_greater_zero-12107377412216353484-value \n",
+ " \n",
+ "\n",
+ "cluster_greater_zero-12107377412216353484-value \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_93 \n",
+ " \n",
+ "\n",
+ "cluster_93 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_156 \n",
+ " \n",
+ "\n",
+ "cluster_156 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_150 \n",
+ " \n",
+ "\n",
+ "cluster_150 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_200 \n",
+ " \n",
+ "\n",
+ "cluster_200 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_136 \n",
+ " \n",
+ "\n",
+ "cluster_136 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_210 \n",
+ " \n",
+ "\n",
+ "cluster_210 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_213 \n",
+ " \n",
+ "\n",
+ "cluster_213 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_35 \n",
+ " \n",
+ "\n",
+ "cluster_35 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_197 \n",
+ " \n",
+ "\n",
+ "cluster_197 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_174 \n",
+ " \n",
+ "\n",
+ "cluster_174 \n",
+ " \n",
+ " \n",
+ "\n",
+ "outer_cluster_208 \n",
+ " \n",
+ "\n",
+ "cluster_208 \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_dtype-15121139857639374588:s->assume_isfinite-10080759905092916392 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_isfinite-10080759905092916392:s->assume_shape-14591484260056516843 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_dtype-10080759905092916392:s->assume_shape-14591484260056516843 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_shape-14591484260056516843:s->assume_dtype-3429551472952562336 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_shape-14591484260056516843:s->NDArray_shape-15121139857639374588 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_dtype-11743562013128004906:s->assume_dtype-3429551472952562336 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_dtype-3429551472952562336:s->NDArray_dtype-10080759905092916392 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_device-15121139857639374588:s->asarray-9510298863856844727 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "asarray-9510298863856844727:s->assume_isfinite-10080759905092916392 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float___truediv__-12808993487988576005:s->Float_rational-0 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float___truediv__-12808993487988576005:s->Float_from_int-11951456526892775522 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float_from_int-11951456526892775522:s->Int___sub__-2601583573127157282 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float_from_int-12938778466233897741:s->TupleInt_length-11379923615081194535 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt_length-11379923615081194535:s->NDArray_shape-7742477628363861583 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float___truediv__-5949890542083451333:s->Float_from_int-12938778466233897741 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float___truediv__-5949890542083451333:s->Float___truediv__-5949890542083451333 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___sub__-2601583573127157282:s->Int___init__-16347205588787662656 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___sub__-2601583573127157282:s->Int___init__-11743562013128004906 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-11068081844434038611:s->MultiAxisIndexKey___add__-7546443524583315781 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-7546443524583315781:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-7546443524583315781:s->MultiAxisIndexKey___init__-17771263905015585321 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-2961965818023366657:s->MultiAxisIndexKey___add__-9019874688858188702 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-9019874688858188702:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-9019874688858188702:s->MultiAxisIndexKey___init__-9665147878604913367 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_slice-4520820669176069863:s->Slice___init__-15501507093852132239 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Slice___init__-15501507093852132239:s->OptionalInt_some-11224002729757616573 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-2650124047376210733:s->MultiAxisIndexKey___add__-4155431249018709085 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-4155431249018709085:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-4155431249018709085:s->MultiAxisIndexKey___init__-4312926155411299247 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-7690503999922668929:s->NDArray___eq__-17968234112188297122 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-17968234112188297122:s->TupleNDArray___getitem__-10045558824545728354 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-17968234112188297122:s->NDArray___getitem__-6343722845416298339 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-3689419615158525606:s->MultiAxisIndexKey___add__-10696952293987308628 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-10696952293987308628:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-10696952293987308628:s->MultiAxisIndexKey___init__-10392601675740072316 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-10236680790416494354:s->NDArray___eq__-7887474207095380730 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-7887474207095380730:s->NDArray___getitem__-16424482750509214731 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-7887474207095380730:s->TupleNDArray___getitem__-10045558824545728354 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-4468847040734877209:s->NDArray___eq__-3677844317228415595 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-3677844317228415595:s->NDArray_scalar-3845340500482103568 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-3677844317228415595:s->std-4851945112178408602 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_int-12938778466233897741:s->Int___sub__-11477953740632672431 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___sub__-11477953740632672431:s->TupleValue_length-883374682458736911 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___sub__-11477953740632672431:s->Int___add__-17495654355659155035 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-9457253364840142751:s->NDArray___eq__-5948126446311695931 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-5948126446311695931:s->asarray-17776165865978447989 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-5948126446311695931:s->NDArray_scalar-3845340500482103568 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-1091269196223507527:s->NDArray___eq__-14314110614928331155 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-14314110614928331155:s->NDArray_scalar-14757501459592564217 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-14314110614928331155:s->assume_value_one_of-5323778840018127892 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-5456168980075999428:s->MultiAxisIndexKey___add__-8188473634840644445 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-8188473634840644445:s->MultiAxisIndexKey___init__-9353306107957757443 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-8188473634840644445:s->MultiAxisIndexKey___init__-12159351040657546138 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-7742477628363861583:s->reshape-4112525690760736104 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue_length-51973628441192654:s->TupleValue___init__-14757501459592564217 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___init__-14757501459592564217:s->TupleValue___getitem__-4148863126349750477 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue_length-883374682458736911:s->TupleValue___init__-3845340500482103568 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___init__-3845340500482103568:s->TupleValue___getitem__-7786309113067083429 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___add__-17495654355659155035:s->Int___sub__-11477953740632672431 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___add__-17495654355659155035:s->Int___init__-5871781006564002453 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_to_int-7118971088111087942:s->NDArray_to_value-1247190081547085489 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_to_value-1247190081547085489:s->sum-1681433789052220133 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_to_int-5352221723193614120:s->NDArray_to_value-17927184790339163283 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_to_value-17927184790339163283:s->sum-1955564354691009820 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue_length-467762655970733886:s->TupleValue___add__-15259460202689358531 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___add__-15259460202689358531:s->TupleValue___init__-14757501459592564217 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___add__-15259460202689358531:s->TupleValue___init__-3845340500482103568 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue_length-18083105675662741245:s->possible_values-12211324669098738792 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "possible_values-12211324669098738792:s->NDArray_index-12579319251068649370 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-14078601210367663714:s->NDArray_shape-12782857580910319779 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-12782857580910319779:s->unique_values-12782857580910319779 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-11605336705429392564:s->NDArray_shape-10080759905092916392 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-10080759905092916392:s->assume_shape-14591484260056516843 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-12686509587440430679:s->TupleInt___init__-103947256882385308 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___init__-103947256882385308:s->Int___init__-6755155689022739364 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-7967890718712059612:s->TupleValue_length-51973628441192654 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-7967890718712059612:s->TupleInt___add__-13243224121832505654 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___add__-13243224121832505654:s->TupleInt___init__-103947256882385308 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___add__-13243224121832505654:s->NDArray_shape-1714775736476281168 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-12159351040657546138:s->MultiAxisIndexKeyItem_slice-6287570034093543685 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-9665147878604913367:s->MultiAxisIndexKeyItem_slice-3793366872040910914 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKeyItem_slice-6287570034093543685:s->Slice___init__-14445438978175812750 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-17771263905015585321:s->MultiAxisIndexKeyItem_int-12938778466233897741 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKeyItem_int-12938778466233897741:s->TupleValue_length-883374682458736911 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-10392601675740072316:s->MultiAxisIndexKeyItem_slice-4520820669176069863 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKeyItem_slice-4520820669176069863:s->Slice___init__-15501507093852132239 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKeyItem_slice-3793366872040910914:s->Slice___init__-1162291712589082458 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Slice___init__-14445438978175812750:s->OptionalInt_some-12990752094675090395 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Slice___init__-1162291712589082458:s->OptionalInt_some-12938778466233897741 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-11120055472875231265:s->Value_float-5248274466311228812 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_float-5248274466311228812:s->Float_rational-17615343019692007359 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "asarray-7902703286805427734:s->asarray-7902703286805427734 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-17483047916985507424:s->IndexKey_multi_axis-2650124047376210733 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-17483047916985507424:s->NDArray___setitem__-18325169333216085054 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-18325169333216085054:s->IndexKey_multi_axis-11068081844434038611 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-18325169333216085054:s->NDArray___setitem__-7453141863274628760 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-18325169333216085054:s->mean-3476503888447580293 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "mean-9206860573968271485:s->NDArray___getitem__-16307929054953181812 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "mean-9206860573968271485:s->OptionalIntOrTuple_some-6859102945905124672 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-16307929054953181812:s->asarray-9510298863856844727 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-16307929054953181812:s->ndarray_index-7690503999922668929 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "concat-9071020324919791953:s->TupleNDArray___add__-17612194977553982959 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___add__-17612194977553982959:s->TupleNDArray___init__-14497633317386600947 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___add__-17612194977553982959:s->TupleNDArray___init__-6131649148769965723 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-18135092377765138894:s->TupleValue_length-51973628441192654 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-18135092377765138894:s->svd-7253966389981509278 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "svd-7253966389981509278:s->NDArray___mul__-8455018010728142919 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_T-2858018561140981349:s->NDArray___truediv__-11279504549742320031 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-11279504549742320031:s->NDArray___setitem__-5767087113385015795 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-11279504549742320031:s->NDArray___getitem__-9914932780259612220 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-18178625676753040942:s->assume_isfinite-10080759905092916392 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-18178625676753040942:s->ndarray_index-1091269196223507527 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-11026489642259430172:s->IndexKey_multi_axis-2961965818023366657 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-11026489642259430172:s->NDArray___matmul__-7132500556515696557 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-7132500556515696557:s->NDArray___sub__-8877293197236476153 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-7132500556515696557:s->NDArray___matmul__-10968585808826125111 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-15656725660214344740:s->astype-6261542238027864055 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-15656725660214344740:s->NDArray_scalar-2598150418935018079 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "astype-6261542238027864055:s->NDArray_dtype-11743562013128004906 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "astype-6261542238027864055:s->TupleNDArray___getitem__-15957548086918070248 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-2598150418935018079:s->Value_float-15173113486080567242 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-9557034512502171054:s->NDArray___setitem__-18325169333216085054 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-9557034512502171054:s->NDArray___truediv__-15656725660214344740 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-9788377807842481490:s->concat-9071020324919791953 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-9788377807842481490:s->NDArray___setitem__-5767087113385015795 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-5767087113385015795:s->ndarray_index-4468847040734877209 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-5767087113385015795:s->NDArray_scalar-12107377412216353484 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-5767087113385015795:s->std-4851945112178408602 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_T-10444575304181264970:s->NDArray___mul__-7696624279617524538 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-7696624279617524538:s->NDArray_T-17147757364762811680 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-7696624279617524538:s->ndarray-sqrt-5404195351634806774 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-9914932780259612220:s->IndexKey_multi_axis-3689419615158525606 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-9914932780259612220:s->TupleNDArray___getitem__-1818913068061409678 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-14757501459592564217:s->TupleValue___getitem__-9658389681233211557 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-9658389681233211557:s->TupleValue___init__-14757501459592564217 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-16424482750509214731:s->IndexKey_int-12938778466233897741 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-16424482750509214731:s->concat-430064524623572644 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "concat-430064524623572644:s->TupleNDArray___init__-12782857580910319779 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-3215265837560371319:s->NDArray_T-2858018561140981349 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-3215265837560371319:s->NDArray___getitem__-11494903289568215254 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-11494903289568215254:s->IndexKey_slice-4520820669176069863 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-11494903289568215254:s->TupleNDArray___getitem__-18135092377765138894 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-1818913068061409678:s->TupleValue_length-467762655970733886 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-1818913068061409678:s->svd-7253966389981509278 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-2205987174022554874:s->IndexKey_multi_axis-11068081844434038611 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-2205987174022554874:s->NDArray___setitem__-18325169333216085054 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___gt__-15651908559655936539:s->TupleNDArray___getitem__-18135092377765138894 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___gt__-15651908559655936539:s->NDArray_scalar-1143242824664700181 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___gt__-8664676620264668937:s->TupleNDArray___getitem__-17539377729349800285 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___gt__-8664676620264668937:s->NDArray___mul__-8440009558605893705 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-17539377729349800285:s->TupleValue_length-883374682458736911 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-17539377729349800285:s->svd-2189404700831293460 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-8440009558605893705:s->NDArray_scalar-1143242824664700181 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-8440009558605893705:s->NDArray___getitem__-17758114586016463110 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "asarray-17776165865978447989:s->reshape-4112525690760736104 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-3845340500482103568:s->TupleValue___getitem__-1353837537593392198 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "sum-1955564354691009820:s->astype-14592420363448682842 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "astype-14592420363448682842:s->NDArray___gt__-15651908559655936539 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-13476223401931994896:s->IndexKey_multi_axis-5456168980075999428 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-13476223401931994896:s->NDArray_T-15484955256727723166 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_T-15484955256727723166:s->TupleNDArray___getitem__-10680274783444675613 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-15121139857639374588:s->assume_isfinite-10080759905092916392 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-7453141863274628760:s->IndexKey_multi_axis-2650124047376210733 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-7453141863274628760:s->mean-9206860573968271485 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-7453141863274628760:s->zeros-16505489609336576318 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "mean-3476503888447580293:s->OptionalIntOrTuple_some-6859102945905124672 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "mean-3476503888447580293:s->NDArray___getitem__-3836913244690017957 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-10680274783444675613:s->TupleValue_length-18083105675662741245 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-10680274783444675613:s->svd-2189404700831293460 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "astype-12468708834165933853:s->NDArray___gt__-8664676620264668937 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-15588902513610108474:s->NDArray_index-1182067134106770624 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-1182067134106770624:s->TupleNDArray___getitem__-17539377729349800285 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-17758114586016463110:s->TupleNDArray___getitem__-17539377729349800285 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_float-15173113486080567242:s->Float_rational-5871781006564002453 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-3836913244690017957:s->assume_isfinite-10080759905092916392 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-3836913244690017957:s->ndarray_index-10236680790416494354 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-10045558824545728354:s->TupleInt_length-11379923615081194535 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-10045558824545728354:s->unique_inverse-7742477628363861583 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-6343722845416298339:s->NDArray_vector-467762655970733886 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-12107377412216353484:s->Value_float-6235596405652351031 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_float-6235596405652351031:s->Float___init__-10858178701590265856 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "sum-1681433789052220133:s->astype-12468708834165933853 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-13392291772433010205:s->NDArray_T-10444575304181264970 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-13392291772433010205:s->NDArray___truediv__-3215265837560371319 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-15957548086918070248:s->Int___sub__-11477953740632672431 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-15957548086918070248:s->unique_counts-7742477628363861583 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "reshape-4112525690760736104:s->reshape-4112525690760736104 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_value_one_of-5323778840018127892:s->TupleValue___add__-15259460202689358531 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_value_one_of-5323778840018127892:s->assume_shape-8316602628326787375 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_shape-8316602628326787375:s->TupleInt___init__-1870696621799859130 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "std-4851945112178408602:s->OptionalIntOrTuple_some-6859102945905124672 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "std-4851945112178408602:s->concat-9071020324919791953 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "svd-2189404700831293460:s->NDArray___matmul__-13392291772433010205 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "unique_counts-7742477628363861583:s->reshape-4112525690760736104 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-8455018010728142919:s->NDArray___truediv__-9788377807842481490 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-8455018010728142919:s->ndarray-sqrt-4416873412293684555 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray-sqrt-4416873412293684555:s->NDArray_scalar-11120055472875231265 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "zeros-16505489609336576318:s->TupleInt___add__-10752996994297486686 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "zeros-16505489609336576318:s->OptionalDType_some-3429551472952562336 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "zeros-16505489609336576318:s->OptionalDevice_some-5144327209428843504 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___add__-10752996994297486686:s->TupleInt___init__-103947256882385308 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___add__-10752996994297486686:s->TupleInt___init__-6079675520328773069 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalDType_some-3429551472952562336:s->NDArray_dtype-11743562013128004906 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalDevice_some-5144327209428843504:s->NDArray_device-15121139857639374588 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-13770179520251441998:s->Value_int-1870696621799859130 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_int-1870696621799859130:s->Int___init__-16347205588787662656 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-9812641508136405718:s->asarray-9510298863856844727 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-9812641508136405718:s->ndarray_index-9457253364840142751 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-4099386548708531027:s->NDArray___truediv__-15656725660214344740 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-4099386548708531027:s->NDArray_scalar-13770179520251441998 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_T-17147757364762811680:s->NDArray___sub__-1374586120005010617 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-1374586120005010617:s->NDArray___setitem__-18325169333216085054 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-1374586120005010617:s->NDArray___matmul__-9557034512502171054 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-8877293197236476153:s->assume_isfinite-10080759905092916392 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-8877293197236476153:s->NDArray___matmul__-9557034512502171054 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-9558798608273926456:s->NDArray___getitem__-18178625676753040942 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-9558798608273926456:s->NDArray___getitem__-2205987174022554874 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-10968585808826125111:s->NDArray___truediv__-3215265837560371319 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-10968585808826125111:s->NDArray___getitem__-13476223401931994896 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "unique_inverse-7742477628363861583:s->assume_value_one_of-5323778840018127892 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray-sqrt-5404195351634806774:s->NDArray___mul__-3756686807776082277 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-3756686807776082277:s->NDArray_scalar-12107377412216353484 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-3756686807776082277:s->NDArray___mul__-4099386548708531027 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-10430407918099810154:s->NDArray___getitem__-17483047916985507424 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-10430407918099810154:s->NDArray___getitem__-9812641508136405718 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___init__-12782857580910319779:s->unique_values-12782857580910319779 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-13683004811263061306:s->unique_inverse-7742477628363861583 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "unique_values-12782857580910319779:s->NDArray_vector-18083105675662741245 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_vector-18083105675662741245:s->possible_values-12211324669098738792 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "unique_values-7742477628363861583:s->asarray-17776165865978447989 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_vector-467762655970733886:s->possible_values-13042725723116283049 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "possible_values-13042725723116283049:s->NDArray_index-17067340853146132798 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-1353837537593392198:s->possible_values-12211324669098738792 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___init__-1870696621799859130:s->TupleInt___getitem__-11605336705429392564 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalInt_some-11224002729757616573:s->Value_to_int-5352221723193614120 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalInt_some-12938778466233897741:s->Int___init__-5871781006564002453 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalInt_some-12990752094675090395:s->Value_to_int-7118971088111087942 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-11951456526892775522:s->Int___sub__-2601583573127157282 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-6079675520328773069:s->TupleValue_length-18083105675662741245 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-103947256882385308:s->TupleInt___getitem__-12686509587440430679 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-1870696621799859130:s->TupleInt___getitem__-11605336705429392564 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-12938778466233897741:s->TupleValue_length-883374682458736911 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-1714775736476281168:s->assume_shape-8316602628326787375 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___init__-6079675520328773069:s->TupleValue_length-467762655970733886 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___init__-12938778466233897741:s->TupleInt_length-11379923615081194535 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___init__-14497633317386600947:s->NDArray___sub__-10430407918099810154 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___init__-6131649148769965723:s->NDArray___sub__-9558798608273926456 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-7786309113067083429:s->TupleValue___add__-15259460202689358531 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-12579319251068649370:s->concat-430064524623572644 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-17067340853146132798:s->assume_shape-8316602628326787375 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-4148863126349750477:s->TupleInt_length-11379923615081194535 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-4148863126349750477:s->possible_values-13042725723116283049 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-13770179520251441998:s->Value_int-1870696621799859130 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-14757501459592564217:s->TupleValue___getitem__-14448359888109329694 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-14448359888109329694:s->Int___sub__-11477953740632672431 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-14448359888109329694:s->possible_values-12211324669098738792 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-2598150418935018079:s->Value_float-15173113486080567242 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-12107377412216353484:s->Value_float-6235596405652351031 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-3712217405396014230:s->sum-1955564354691009820 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_int-12938778466233897741:s->Int___init__-5871781006564002453 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-10864543514592368202:s->NDArray_vector-467762655970733886 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-10864543514592368202:s->TupleInt___init__-12938778466233897741 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-15769018209198649053:s->asarray-17776165865978447989 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-6690955771313385503:s->sum-1681433789052220133 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-16788298149597563309:s->NDArray_vector-18083105675662741245 \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_dtype-15121139857639374588 \n",
+ "\n",
+ " \n",
+ "NDArray_dtype \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_isfinite-10080759905092916392 \n",
+ "\n",
+ " \n",
+ "assume_isfinite \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_dtype-10080759905092916392 \n",
+ "\n",
+ " \n",
+ "NDArray_dtype \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_shape-14591484260056516843 \n",
+ "\n",
+ " \n",
+ "assume_shape \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_dtype-11743562013128004906 \n",
+ "\n",
+ " \n",
+ "NDArray_dtype \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_dtype-3429551472952562336 \n",
+ "\n",
+ " \n",
+ "assume_dtype(NDArray_var("X"), ·) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "DType_float64-0 \n",
+ "\n",
+ " \n",
+ "DType_float64 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_device-15121139857639374588 \n",
+ "\n",
+ " \n",
+ "NDArray_device \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "asarray-9510298863856844727 \n",
+ "\n",
+ " \n",
+ "asarray(·, OptionalDType_none, OptionalBool_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float___truediv__-12808993487988576005 \n",
+ "\n",
+ " \n",
+ "Float___truediv__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float_rational-0 \n",
+ "\n",
+ " \n",
+ "Float_rational((rational 1 1)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float_from_int-11951456526892775522 \n",
+ "\n",
+ " \n",
+ "Float_from_int \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float_rational-17615343019692007359 \n",
+ "\n",
+ " \n",
+ "Float_rational((rational 1 999998)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float_from_int-12938778466233897741 \n",
+ "\n",
+ " \n",
+ "Float_from_int \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt_length-11379923615081194535 \n",
+ "\n",
+ " \n",
+ "TupleInt_length \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float___truediv__-5949890542083451333 \n",
+ "\n",
+ " \n",
+ "Float___truediv__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float___init__-10858178701590265856 \n",
+ "\n",
+ " \n",
+ "Float___init__(1.0) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float___init__-15726603433882419200 \n",
+ "\n",
+ " \n",
+ "Float___init__(1000000.0) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float_rational-5871781006564002453 \n",
+ "\n",
+ " \n",
+ "Float_rational((rational 1000000 1)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___sub__-2601583573127157282 \n",
+ "\n",
+ " \n",
+ "Int___sub__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Float_rational-11743562013128004906 \n",
+ "\n",
+ " \n",
+ "Float_rational((rational 999998 1)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-11068081844434038611 \n",
+ "\n",
+ " \n",
+ "IndexKey_multi_axis \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-7546443524583315781 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-2961965818023366657 \n",
+ "\n",
+ " \n",
+ "IndexKey_multi_axis \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-9019874688858188702 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_slice-4520820669176069863 \n",
+ "\n",
+ " \n",
+ "IndexKey_slice \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Slice___init__-15501507093852132239 \n",
+ "\n",
+ " \n",
+ "Slice___init__(OptionalInt_none, ·, OptionalInt_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-2650124047376210733 \n",
+ "\n",
+ " \n",
+ "IndexKey_multi_axis \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-4155431249018709085 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-7690503999922668929 \n",
+ "\n",
+ " \n",
+ "ndarray_index \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-17968234112188297122 \n",
+ "\n",
+ " \n",
+ "NDArray___eq__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-3689419615158525606 \n",
+ "\n",
+ " \n",
+ "IndexKey_multi_axis \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-10696952293987308628 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-10236680790416494354 \n",
+ "\n",
+ " \n",
+ "ndarray_index \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-7887474207095380730 \n",
+ "\n",
+ " \n",
+ "NDArray___eq__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-4468847040734877209 \n",
+ "\n",
+ " \n",
+ "ndarray_index \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-3677844317228415595 \n",
+ "\n",
+ " \n",
+ "NDArray___eq__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_int-12938778466233897741 \n",
+ "\n",
+ " \n",
+ "IndexKey_int \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___sub__-11477953740632672431 \n",
+ "\n",
+ " \n",
+ "Int___sub__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-9457253364840142751 \n",
+ "\n",
+ " \n",
+ "ndarray_index \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-5948126446311695931 \n",
+ "\n",
+ " \n",
+ "NDArray___eq__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray_index-1091269196223507527 \n",
+ "\n",
+ " \n",
+ "ndarray_index \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___eq__-14314110614928331155 \n",
+ "\n",
+ " \n",
+ "NDArray___eq__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "IndexKey_multi_axis-5456168980075999428 \n",
+ "\n",
+ " \n",
+ "IndexKey_multi_axis \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___add__-8188473634840644445 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___init__-16347205588787662656 \n",
+ "\n",
+ " \n",
+ "Int___init__(1000000) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___init__-11743562013128004906 \n",
+ "\n",
+ " \n",
+ "Int___init__(2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___init__-4603643575659657750 \n",
+ "\n",
+ " \n",
+ "Int___init__(999998) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-7742477628363861583 \n",
+ "\n",
+ " \n",
+ "NDArray_shape \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue_length-51973628441192654 \n",
+ "\n",
+ " \n",
+ "TupleValue_length \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___init__-14757501459592564217 \n",
+ "\n",
+ " \n",
+ "TupleValue___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue_length-883374682458736911 \n",
+ "\n",
+ " \n",
+ "TupleValue_length \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___init__-3845340500482103568 \n",
+ "\n",
+ " \n",
+ "TupleValue___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___add__-17495654355659155035 \n",
+ "\n",
+ " \n",
+ "Int___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___init__-5871781006564002453 \n",
+ "\n",
+ " \n",
+ "Int___init__(1) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_to_int-7118971088111087942 \n",
+ "\n",
+ " \n",
+ "Value_to_int \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_to_value-1247190081547085489 \n",
+ "\n",
+ " \n",
+ "NDArray_to_value \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_to_int-5352221723193614120 \n",
+ "\n",
+ " \n",
+ "Value_to_int \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_to_value-17927184790339163283 \n",
+ "\n",
+ " \n",
+ "NDArray_to_value \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue_length-467762655970733886 \n",
+ "\n",
+ " \n",
+ "TupleValue_length \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___add__-15259460202689358531 \n",
+ "\n",
+ " \n",
+ "TupleValue___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue_length-18083105675662741245 \n",
+ "\n",
+ " \n",
+ "TupleValue_length \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "possible_values-12211324669098738792 \n",
+ "\n",
+ " \n",
+ "possible_values \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-14078601210367663714 \n",
+ "\n",
+ " \n",
+ "TupleInt___getitem__(·, Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-12782857580910319779 \n",
+ "\n",
+ " \n",
+ "NDArray_shape \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-11605336705429392564 \n",
+ "\n",
+ " \n",
+ "TupleInt___getitem__(·, Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-10080759905092916392 \n",
+ "\n",
+ " \n",
+ "NDArray_shape \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-12686509587440430679 \n",
+ "\n",
+ " \n",
+ "TupleInt___getitem__(·, Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___init__-103947256882385308 \n",
+ "\n",
+ " \n",
+ "TupleInt___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___getitem__-7967890718712059612 \n",
+ "\n",
+ " \n",
+ "TupleInt___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___add__-13243224121832505654 \n",
+ "\n",
+ " \n",
+ "TupleInt___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int___init__-6755155689022739364 \n",
+ "\n",
+ " \n",
+ "Int___init__(20) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-9353306107957757443 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___init__(MultiAxisIndexKeyItem_slice(Slice___init__(OptionalInt_none, OptionalInt_none, OptionalInt_none))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-12159351040657546138 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-9665147878604913367 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKeyItem_slice-6287570034093543685 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKeyItem_slice \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-17771263905015585321 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKeyItem_int-12938778466233897741 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKeyItem_int \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-4312926155411299247 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___init__(MultiAxisIndexKeyItem_int(Int___init__(0))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKey___init__-10392601675740072316 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKey___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKeyItem_slice-4520820669176069863 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKeyItem_slice \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "MultiAxisIndexKeyItem_slice-3793366872040910914 \n",
+ "\n",
+ " \n",
+ "MultiAxisIndexKeyItem_slice \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Slice___init__-14445438978175812750 \n",
+ "\n",
+ " \n",
+ "Slice___init__(OptionalInt_none, ·, OptionalInt_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Slice___init__-1162291712589082458 \n",
+ "\n",
+ " \n",
+ "Slice___init__(OptionalInt_none, ·, OptionalInt_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-11120055472875231265 \n",
+ "\n",
+ " \n",
+ "NDArray_scalar \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_float-5248274466311228812 \n",
+ "\n",
+ " \n",
+ "Value_float \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "asarray-7902703286805427734 \n",
+ "\n",
+ " \n",
+ "asarray(·, OptionalDType_none, OptionalBool_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-17483047916985507424 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-18325169333216085054 \n",
+ "\n",
+ " \n",
+ "NDArray___setitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "mean-9206860573968271485 \n",
+ "\n",
+ " \n",
+ "mean(·, ·, FALSE) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-16307929054953181812 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalIntOrTuple_some-6859102945905124672 \n",
+ "\n",
+ " \n",
+ "OptionalIntOrTuple_some(IntOrTuple_int(Int___init__(0))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "concat-9071020324919791953 \n",
+ "\n",
+ " \n",
+ "concat(·, OptionalInt_some(Int___init__(0))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___add__-17612194977553982959 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-18135092377765138894 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "svd-7253966389981509278 \n",
+ "\n",
+ " \n",
+ "svd(·, FALSE) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_T-2858018561140981349 \n",
+ "\n",
+ " \n",
+ "NDArray_T \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-11279504549742320031 \n",
+ "\n",
+ " \n",
+ "NDArray___truediv__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-18178625676753040942 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-11026489642259430172 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-7132500556515696557 \n",
+ "\n",
+ " \n",
+ "NDArray___matmul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-15656725660214344740 \n",
+ "\n",
+ " \n",
+ "NDArray___truediv__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "astype-6261542238027864055 \n",
+ "\n",
+ " \n",
+ "astype \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-2598150418935018079 \n",
+ "\n",
+ " \n",
+ "NDArray_scalar \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-9557034512502171054 \n",
+ "\n",
+ " \n",
+ "NDArray___matmul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-9788377807842481490 \n",
+ "\n",
+ " \n",
+ "NDArray___truediv__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-5767087113385015795 \n",
+ "\n",
+ " \n",
+ "NDArray___setitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_T-10444575304181264970 \n",
+ "\n",
+ " \n",
+ "NDArray_T \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-7696624279617524538 \n",
+ "\n",
+ " \n",
+ "NDArray___mul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-9914932780259612220 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-14757501459592564217 \n",
+ "\n",
+ " \n",
+ "NDArray_scalar \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-9658389681233211557 \n",
+ "\n",
+ " \n",
+ "TupleValue___getitem__(·, Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-16424482750509214731 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "concat-430064524623572644 \n",
+ "\n",
+ " \n",
+ "concat(·, OptionalInt_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___truediv__-3215265837560371319 \n",
+ "\n",
+ " \n",
+ "NDArray___truediv__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-11494903289568215254 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-1818913068061409678 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-2205987174022554874 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___gt__-15651908559655936539 \n",
+ "\n",
+ " \n",
+ "NDArray___gt__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-1143242824664700181 \n",
+ "\n",
+ " \n",
+ "NDArray_scalar(Value_float(Float___init__(0.0001))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___gt__-8664676620264668937 \n",
+ "\n",
+ " \n",
+ "NDArray___gt__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-17539377729349800285 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-8440009558605893705 \n",
+ "\n",
+ " \n",
+ "NDArray___mul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "asarray-17776165865978447989 \n",
+ "\n",
+ " \n",
+ "asarray(·, OptionalDType_none, OptionalBool_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-3845340500482103568 \n",
+ "\n",
+ " \n",
+ "NDArray_scalar \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "sum-1955564354691009820 \n",
+ "\n",
+ " \n",
+ "sum(·, OptionalIntOrTuple_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "astype-14592420363448682842 \n",
+ "\n",
+ " \n",
+ "astype(·, DType_int32) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-13476223401931994896 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_T-15484955256727723166 \n",
+ "\n",
+ " \n",
+ "NDArray_T \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-15121139857639374588 \n",
+ "\n",
+ " \n",
+ "NDArray_shape \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___setitem__-7453141863274628760 \n",
+ "\n",
+ " \n",
+ "NDArray___setitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "mean-3476503888447580293 \n",
+ "\n",
+ " \n",
+ "mean(·, ·, FALSE) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-10680274783444675613 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "astype-12468708834165933853 \n",
+ "\n",
+ " \n",
+ "astype(·, DType_int32) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-15588902513610108474 \n",
+ "\n",
+ " \n",
+ "NDArray_scalar \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-1182067134106770624 \n",
+ "\n",
+ " \n",
+ "NDArray_index(·, TupleInt___init__(Int___init__(0))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-17758114586016463110 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__(·, IndexKey_int(Int___init__(0))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_float-15173113486080567242 \n",
+ "\n",
+ " \n",
+ "Value_float \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-3836913244690017957 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-10045558824545728354 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-6343722845416298339 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__(·, IndexKey_int(Int___init__(0))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-12107377412216353484 \n",
+ "\n",
+ " \n",
+ "NDArray_scalar \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_float-6235596405652351031 \n",
+ "\n",
+ " \n",
+ "Value_float \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "sum-1681433789052220133 \n",
+ "\n",
+ " \n",
+ "sum(·, OptionalIntOrTuple_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-13392291772433010205 \n",
+ "\n",
+ " \n",
+ "NDArray___matmul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-15957548086918070248 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "reshape-4112525690760736104 \n",
+ "\n",
+ " \n",
+ "reshape(·, TupleInt___init__(Int___init__(-1)), OptionalBool_none) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_value_one_of-5323778840018127892 \n",
+ "\n",
+ " \n",
+ "assume_value_one_of \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "assume_shape-8316602628326787375 \n",
+ "\n",
+ " \n",
+ "assume_shape(assume_dtype(NDArray_var("y"), DType_int64), ·) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "std-4851945112178408602 \n",
+ "\n",
+ " \n",
+ "std \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "svd-2189404700831293460 \n",
+ "\n",
+ " \n",
+ "svd(·, FALSE) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "unique_counts-7742477628363861583 \n",
+ "\n",
+ " \n",
+ "unique_counts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-8455018010728142919 \n",
+ "\n",
+ " \n",
+ "NDArray___mul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray-sqrt-4416873412293684555 \n",
+ "\n",
+ " \n",
+ "ndarray-sqrt \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "zeros-16505489609336576318 \n",
+ "\n",
+ " \n",
+ "zeros \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___add__-10752996994297486686 \n",
+ "\n",
+ " \n",
+ "TupleInt___add__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalDType_some-3429551472952562336 \n",
+ "\n",
+ " \n",
+ "OptionalDType_some \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalDevice_some-5144327209428843504 \n",
+ "\n",
+ " \n",
+ "OptionalDevice_some \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_scalar-13770179520251441998 \n",
+ "\n",
+ " \n",
+ "NDArray_scalar \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_int-1870696621799859130 \n",
+ "\n",
+ " \n",
+ "Value_int \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___getitem__-9812641508136405718 \n",
+ "\n",
+ " \n",
+ "NDArray___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-4099386548708531027 \n",
+ "\n",
+ " \n",
+ "NDArray___mul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_T-17147757364762811680 \n",
+ "\n",
+ " \n",
+ "NDArray_T \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-1374586120005010617 \n",
+ "\n",
+ " \n",
+ "NDArray___sub__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-8877293197236476153 \n",
+ "\n",
+ " \n",
+ "NDArray___sub__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-9558798608273926456 \n",
+ "\n",
+ " \n",
+ "NDArray___sub__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___matmul__-10968585808826125111 \n",
+ "\n",
+ " \n",
+ "NDArray___matmul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "unique_inverse-7742477628363861583 \n",
+ "\n",
+ " \n",
+ "unique_inverse \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "ndarray-sqrt-5404195351634806774 \n",
+ "\n",
+ " \n",
+ "ndarray-sqrt \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___mul__-3756686807776082277 \n",
+ "\n",
+ " \n",
+ "NDArray___mul__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray___sub__-10430407918099810154 \n",
+ "\n",
+ " \n",
+ "NDArray___sub__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___init__-12782857580910319779 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___getitem__-13683004811263061306 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___getitem__(·, Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "unique_values-12782857580910319779 \n",
+ "\n",
+ " \n",
+ "unique_values \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_vector-18083105675662741245 \n",
+ "\n",
+ " \n",
+ "NDArray_vector \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "unique_values-7742477628363861583 \n",
+ "\n",
+ " \n",
+ "unique_values \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_vector-467762655970733886 \n",
+ "\n",
+ " \n",
+ "NDArray_vector \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "possible_values-13042725723116283049 \n",
+ "\n",
+ " \n",
+ "possible_values \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-1353837537593392198 \n",
+ "\n",
+ " \n",
+ "TupleValue___getitem__(·, Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___init__-1870696621799859130 \n",
+ "\n",
+ " \n",
+ "TupleInt___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalInt_some-11224002729757616573 \n",
+ "\n",
+ " \n",
+ "OptionalInt_some \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalInt_some-12938778466233897741 \n",
+ "\n",
+ " \n",
+ "OptionalInt_some \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "OptionalInt_some-12990752094675090395 \n",
+ "\n",
+ " \n",
+ "OptionalInt_some \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-7586556743040283621-value \n",
+ "\n",
+ " \n",
+ "(py-object -9223372036570011657 0) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-7586556743040283621 \n",
+ "\n",
+ " \n",
+ "Int_to_py(Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-11951456526892775522 \n",
+ "\n",
+ " \n",
+ "Int_to_py \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-11951456526892775522-value \n",
+ "\n",
+ " \n",
+ "(py-object -9223372036570011657 999998) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-6079675520328773069 \n",
+ "\n",
+ " \n",
+ "Int_to_py \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-6079675520328773069-value \n",
+ "\n",
+ " \n",
+ "(py-object -9223372036570011657 2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-103947256882385308 \n",
+ "\n",
+ " \n",
+ "Int_to_py \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-103947256882385308-value \n",
+ "\n",
+ " \n",
+ "(py-object -9223372036570011657 20) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-5092353580987650850-value \n",
+ "\n",
+ " \n",
+ "(py-object -9223372036570011657 -2) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-5092353580987650850 \n",
+ "\n",
+ " \n",
+ "Int_to_py(Int___init__(-1)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-1870696621799859130 \n",
+ "\n",
+ " \n",
+ "Int_to_py \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-1870696621799859130-value \n",
+ "\n",
+ " \n",
+ "(py-object -9223372036570011657 1000000) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Boolean_to_py-155920885323577962-value \n",
+ "\n",
+ " \n",
+ "(py-object 284764003 0) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Boolean_to_py-155920885323577962 \n",
+ "\n",
+ " \n",
+ "Boolean_to_py(FALSE) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-12938778466233897741 \n",
+ "\n",
+ " \n",
+ "Int_to_py \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Int_to_py-12938778466233897741-value \n",
+ "\n",
+ " \n",
+ "(py-object -9223372036570011657 1) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_shape-1714775736476281168 \n",
+ "\n",
+ " \n",
+ "NDArray_shape \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___init__-6079675520328773069 \n",
+ "\n",
+ " \n",
+ "TupleInt___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleInt___init__-12938778466233897741 \n",
+ "\n",
+ " \n",
+ "TupleInt___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___init__-14497633317386600947 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleNDArray___init__-6131649148769965723 \n",
+ "\n",
+ " \n",
+ "TupleNDArray___init__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-7786309113067083429 \n",
+ "\n",
+ " \n",
+ "TupleValue___getitem__(·, Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-12579319251068649370 \n",
+ "\n",
+ " \n",
+ "NDArray_index(·, ALL_INDICES) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-17067340853146132798 \n",
+ "\n",
+ " \n",
+ "NDArray_index(·, ALL_INDICES) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-4148863126349750477 \n",
+ "\n",
+ " \n",
+ "TupleValue___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-1143242824664700181-value \n",
+ "\n",
+ " \n",
+ "() \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-1143242824664700181 \n",
+ "\n",
+ " \n",
+ "greater_zero(Value_float(Float___init__(0.0001))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-13770179520251441998 \n",
+ "\n",
+ " \n",
+ "greater_zero \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-13770179520251441998-value \n",
+ "\n",
+ " \n",
+ "() \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-14757501459592564217 \n",
+ "\n",
+ " \n",
+ "greater_zero \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "TupleValue___getitem__-14448359888109329694 \n",
+ "\n",
+ " \n",
+ "TupleValue___getitem__ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-14757501459592564217-value \n",
+ "\n",
+ " \n",
+ "() \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-2598150418935018079 \n",
+ "\n",
+ " \n",
+ "greater_zero \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-2598150418935018079-value \n",
+ "\n",
+ " \n",
+ "() \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-12107377412216353484 \n",
+ "\n",
+ " \n",
+ "greater_zero \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "greater_zero-12107377412216353484-value \n",
+ "\n",
+ " \n",
+ "() \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-3712217405396014230 \n",
+ "\n",
+ " \n",
+ "NDArray_index(·, TupleInt_EMPTY) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_int-12938778466233897741 \n",
+ "\n",
+ " \n",
+ "Value_int \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-10864543514592368202 \n",
+ "\n",
+ " \n",
+ "NDArray_index \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-15769018209198649053 \n",
+ "\n",
+ " \n",
+ "NDArray_index(·, ALL_INDICES) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-5822399466274154604 \n",
+ "\n",
+ " \n",
+ "NDArray_index(assume_dtype(NDArray_var("y"), DType_int64), ALL_INDICES) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-7547271516962905184 \n",
+ "\n",
+ " \n",
+ "NDArray_index(NDArray_var("y"), ALL_INDICES) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-6690955771313385503 \n",
+ "\n",
+ " \n",
+ "NDArray_index(·, TupleInt_EMPTY) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "NDArray_index-16788298149597563309 \n",
+ "\n",
+ " \n",
+ "NDArray_index(·, TupleInt___init__(Int___init__(0))) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ "\n",
+ "Value_int-7586556743040283621 \n",
+ "\n",
+ " \n",
+ "Value_int(Int___init__(0)) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " "
],
- "source": [
- "import numba\n",
- "import os\n",
- "\n",
- "fn_numba = numba.njit(fastmath=True)(fn)\n",
- "assert np.allclose(run_lda(X_np, y_np), fn_numba(X_np, y_np))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "078d41b3",
- "metadata": {},
- "source": [
- "## Evaluating performance\n",
- "\n",
- "Let's see if it actually made anything quicker! Let's run a number of trials for the original function, our\n",
- "extracted version, and the optimized extracted version:\n"
+ "text/plain": [
+ ""
]
- },
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "egraph.display(n_inline_leaves=3, split_primitive_outputs=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "21e4ee3a",
+ "metadata": {},
+ "source": [
+ "## Translating for Numba\n",
+ "\n",
+ "We are getting closer to a form we could translate back to Numba, but we have to make a few changes. Numba doesn't\n",
+ "support the `axis` keyword for `mean` or `std`, but it does support it for `sum`, so we have to translate all forms\n",
+ "from one to the other, with a rule like this (defined in [`egglog.exp.array_api_numba`](https://github.com/egraphs-good/egglog-python/blob/main/python/egglog/exp/array_api_numba.py)):\n",
+ "\n",
+ "```python\n",
+ "axis = OptionalIntOrTuple.some(IntOrTuple.int(i))\n",
+ "rewrite(std(x, axis)).to(sqrt(mean(square(abs(x - mean(x, axis, keepdims=TRUE))), axis)))\n",
+ "```\n",
+ "\n",
+ "We can run those additional rewrites now to get a new extracted version\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "9e79f88e",
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 10,
- "id": "27a0cafc",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " original \n",
- " extracted \n",
- " extracted numba \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 1.482975 \n",
- " 1.609354 \n",
- " 1.086486 \n",
- " \n",
- " \n",
- " 1 \n",
- " 1.498656 \n",
- " 1.504704 \n",
- " 1.145331 \n",
- " \n",
- " \n",
- " 2 \n",
- " 1.500998 \n",
- " 1.557253 \n",
- " 1.090356 \n",
- " \n",
- " \n",
- " 3 \n",
- " 1.519732 \n",
- " 1.548800 \n",
- " 1.122623 \n",
- " \n",
- " \n",
- " 4 \n",
- " 1.500420 \n",
- " 1.501195 \n",
- " 1.113089 \n",
- " \n",
- " \n",
- " 5 \n",
- " 1.587211 \n",
- " 1.522518 \n",
- " 1.176842 \n",
- " \n",
- " \n",
- " 6 \n",
- " 1.499479 \n",
- " 1.526887 \n",
- " 1.095296 \n",
- " \n",
- " \n",
- " 7 \n",
- " 1.639910 \n",
- " 1.500859 \n",
- " 1.086477 \n",
- " \n",
- " \n",
- " 8 \n",
- " 1.525145 \n",
- " 1.559202 \n",
- " 1.103662 \n",
- " \n",
- " \n",
- " 9 \n",
- " 1.535601 \n",
- " 1.474299 \n",
- " 1.074152 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " original extracted extracted numba\n",
- "0 1.482975 1.609354 1.086486\n",
- "1 1.498656 1.504704 1.145331\n",
- "2 1.500998 1.557253 1.090356\n",
- "3 1.519732 1.548800 1.122623\n",
- "4 1.500420 1.501195 1.113089\n",
- "5 1.587211 1.522518 1.176842\n",
- "6 1.499479 1.526887 1.095296\n",
- "7 1.639910 1.500859 1.086477\n",
- "8 1.525145 1.559202 1.103662\n",
- "9 1.535601 1.474299 1.074152"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
+ "data": {
+ "text/html": [
+ "_NDArray_1 = NDArray . var ( "X" ) \n",
+ "assume_dtype ( _NDArray_1 , DType . float64 ) \n",
+ "assume_shape ( _NDArray_1 , TupleInt ( Int ( 1000000 )) + TupleInt ( Int ( 20 ))) \n",
+ "assume_isfinite ( _NDArray_1 ) \n",
+ "_NDArray_2 = NDArray . var ( "y" ) \n",
+ "assume_dtype ( _NDArray_2 , DType . int64 ) \n",
+ "assume_shape ( _NDArray_2 , TupleInt ( Int ( 1000000 ))) \n",
+ "assume_value_one_of ( _NDArray_2 , TupleValue ( Value . int ( Int ( 0 ))) + TupleValue ( Value . int ( Int ( 1 )))) \n",
+ "_NDArray_3 = astype ( \n",
+ " NDArray . vector ( TupleValue ( sum ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 0 )))) . to_value ()) + TupleValue ( sum ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 1 )))) . to_value ())), \n",
+ " DType . float64 , \n",
+ ") / NDArray . scalar ( Value . float ( Float ( 1000000.0 ))) \n",
+ "_NDArray_4 = zeros ( TupleInt ( Int ( 2 )) + TupleInt ( Int ( 20 )), OptionalDType . some ( DType . float64 ), OptionalDevice . some ( _NDArray_1 . device )) \n",
+ "_MultiAxisIndexKey_1 = MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ())) \n",
+ "_IndexKey_1 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 0 ))) + _MultiAxisIndexKey_1 ) \n",
+ "_NDArray_5 = _NDArray_1 [ ndarray_index ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 0 ))))] \n",
+ "_OptionalIntOrTuple_1 = OptionalIntOrTuple . some ( IntOrTuple . int ( Int ( 0 ))) \n",
+ "_NDArray_4 [ _IndexKey_1 ] = sum ( _NDArray_5 , _OptionalIntOrTuple_1 ) / NDArray . scalar ( Value . int ( _NDArray_5 . shape [ Int ( 0 )])) \n",
+ "_IndexKey_2 = IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . int ( Int ( 1 ))) + _MultiAxisIndexKey_1 ) \n",
+ "_NDArray_6 = _NDArray_1 [ ndarray_index ( _NDArray_2 == NDArray . scalar ( Value . int ( Int ( 1 ))))] \n",
+ "_NDArray_4 [ _IndexKey_2 ] = sum ( _NDArray_6 , _OptionalIntOrTuple_1 ) / NDArray . scalar ( Value . int ( _NDArray_6 . shape [ Int ( 0 )])) \n",
+ "_NDArray_7 = concat ( TupleNDArray ( _NDArray_5 - _NDArray_4 [ _IndexKey_1 ]) + TupleNDArray ( _NDArray_6 - _NDArray_4 [ _IndexKey_2 ]), OptionalInt . some ( Int ( 0 ))) \n",
+ "_NDArray_8 = square ( _NDArray_7 - expand_dims ( sum ( _NDArray_7 , _OptionalIntOrTuple_1 ) / NDArray . scalar ( Value . int ( _NDArray_7 . shape [ Int ( 0 )])))) \n",
+ "_NDArray_9 = sqrt ( sum ( _NDArray_8 , _OptionalIntOrTuple_1 ) / NDArray . scalar ( Value . int ( _NDArray_8 . shape [ Int ( 0 )]))) \n",
+ "_NDArray_10 = copy ( _NDArray_9 ) \n",
+ "_NDArray_10 [ ndarray_index ( _NDArray_9 == NDArray . scalar ( Value . int ( Int ( 0 ))))] = NDArray . scalar ( Value . float ( Float ( 1.0 ))) \n",
+ "_TupleNDArray_1 = svd ( sqrt ( NDArray . scalar ( Value . float ( Float ( 1.0 ) / Float . from_int ( Int ( 999998 ))))) * ( _NDArray_7 / _NDArray_10 ), FALSE ) \n",
+ "_Slice_1 = Slice ( OptionalInt . none , OptionalInt . some ( sum ( astype ( _TupleNDArray_1 [ Int ( 1 )] > NDArray . scalar ( Value . float ( Float ( 0.0001 ))), DType . int32 )) . to_value () . to_int )) \n",
+ "_NDArray_11 = ( _TupleNDArray_1 [ Int ( 2 )][ IndexKey . multi_axis ( MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( _Slice_1 )) + _MultiAxisIndexKey_1 )] / _NDArray_10 ) . T / _TupleNDArray_1 [ \n",
+ " Int ( 1 ) \n",
+ "][ IndexKey . slice ( _Slice_1 )] \n",
+ "_TupleNDArray_2 = svd ( \n",
+ " ( sqrt (( NDArray . scalar ( Value . int ( Int ( 1000000 ))) * _NDArray_3 ) * NDArray . scalar ( Value . float ( Float ( 1.0 )))) * ( _NDArray_4 - ( _NDArray_3 @ _NDArray_4 )) . T ) . T @ _NDArray_11 , FALSE \n",
+ ") \n",
+ "( \n",
+ " ( _NDArray_1 - ( _NDArray_3 @ _NDArray_4 )) \n",
+ " @ ( \n",
+ " _NDArray_11 \n",
+ " @ _TupleNDArray_2 [ Int ( 2 )] . T [ \n",
+ " IndexKey . multi_axis ( \n",
+ " _MultiAxisIndexKey_1 \n",
+ " + MultiAxisIndexKey ( \n",
+ " MultiAxisIndexKeyItem . slice ( \n",
+ " Slice ( \n",
+ " OptionalInt . none , \n",
+ " OptionalInt . some ( \n",
+ " sum ( astype ( _TupleNDArray_2 [ Int ( 1 )] > ( NDArray . scalar ( Value . float ( Float ( 0.0001 ))) * _TupleNDArray_2 [ Int ( 1 )][ IndexKey . int ( Int ( 0 ))]), DType . int32 )) \n",
+ " . to_value () \n",
+ " . to_int \n",
+ " ), \n",
+ " ) \n",
+ " ) \n",
+ " ) \n",
+ " ) \n",
+ " ] \n",
+ " ) \n",
+ ")[ IndexKey . multi_axis ( _MultiAxisIndexKey_1 + MultiAxisIndexKey ( MultiAxisIndexKeyItem . slice ( Slice ( OptionalInt . none , OptionalInt . some ( Int ( 1 ))))))] \n",
+ " \n"
],
- "source": [
- "import timeit\n",
- "import pandas as pd\n",
- "\n",
- "stmts = {\n",
- " \"original\": \"run_lda(X_np, y_np)\",\n",
- " \"extracted\": \"fn(X_np, y_np)\",\n",
- " \"extracted numba\": \"fn_numba(X_np, y_np)\",\n",
- "}\n",
- "df = pd.DataFrame.from_dict(\n",
- " {name: timeit.repeat(stmt, globals=globals(), number=1, repeat=10) for name, stmt in stmts.items()}\n",
- ")\n",
- "\n",
- "df"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "9488c513",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHqCAYAAADLbQ06AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs/0lEQVR4nO3de3TU5Z3H8c8vgQzkNiEICZeBKBBEKoEN4oW2EFqMWjmiZ0VB1iDUiqDUpVDN1gpYK6utAioIu1WR6Gq9ge5WxQuEmxblEsSIQGJoAEMQhAwBDZA8+weHqYEkJDCXZzLv1zlzDr/bzDeZYT55nt/z/H6OMcYIAABYKSrUBQAAgPoR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgsYgLamOMvF6vuM4LACAcRFxQHzp0SG63W4cOHQp1KQAAnFHEBTUAAOGEoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGCxFqEuAKG3tHCP5i0v0rbySqWnxGtCVndl904NdVkAAEmOMcaEuohg8nq9crvdqqioUGJiYqjLCbmlhXt0R976WuscR5o/OpOwBgAL0PUd4eYtLzptnTHSvPziEFQDADgVQR3htpVX1rl+e/mhIFcCAKgLQR3h0lPi61zfIyUhyJUAAOpCUEe4CVnd5Ti11zmONHFwt9AUBACohaCOcNm9UzV/dKYyPEmKjYlWhidJC0Zn6koGkgGAFRj1DQCAxWhRAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABZrEeoCAISXpYV7NG95kbaVVyo9JV4Tsrorm9uiAgHDbS4BNNrSwj26I299rXWOI80fnUlYAwFC1zeARpu3vOi0dcZI8/KLQ1ANEBkIagCNtq28ss7128sPBbkSIHIQ1AAaLT0lvs71PVISglwJEDlCGtQrV67UsGHD1LFjRzmOoyVLlpzxmKqqKv3ud79T165d5XK5lJaWpmeffTbwxQLQhKzucpza6xxHmji4W2gKAiJASEd9Hz58WBkZGRo7dqxuuOGGRh0zYsQIlZeX65lnnlH37t1VVlammpqaAFcKQJKye6dq/uhMzcsv1vbyQ+qRkqCJg7vpSgaSAQFjzahvx3G0ePFiDR8+vN593n33Xd1888366quvlJycfFavw6hvAEA4Catz1G+99Zb69++vRx99VJ06dVJ6erqmTJmi7777LtSlAQAQEGF1wZOvvvpKq1evVqtWrbR48WLt27dPEyZM0P79+/Xcc8/VeUxVVZWqqqp8y16vN1jlAgBwzsKqRV1TUyPHcfTiiy9qwIABuuaaa/T444/r+eefr7dVPXPmTLndbt/D4/EEuWoAAM5eWAV1hw4d1KlTJ7ndbt+6Xr16yRijXbt21XlMbm6uKioqfI+dO3cGq1wAAM5ZWAX1wIED9fXXX6uy8p8XXdi2bZuioqLUuXPnOo9xuVxKTEys9QAAIFyENKgrKytVUFCggoICSVJJSYkKCgpUWloq6URr+NZbb/XtP2rUKLVt21a33XabvvjiC61cuVJTp07V2LFj1bp161D8CAAABFRIg3rdunXq16+f+vXrJ0maPHmy+vXrpwceeECSVFZW5gttSYqPj9f777+vgwcPqn///rrllls0bNgwPfHEEyGpHwCAQLNmHnWwMI8aABBOwmp6FgKD+wsDgL1oUUc47i8MAHYLq1Hf8D/uLwwAdiOoIxz3FwYAuxHUEY77CwOA3QjqCMf9hQHAbgR1hDt5f+EMT5JiY6KV4UnSgtGZ3F8YACzBqG8AACxGixoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGItQl0AgPC1tHCP5i0v0rbySqWnxGtCVndlc0MXwK+4KQeABtUXxksL9+iOvPW19nUcaf7oTMIa8CO6vgHU62QYb9pVoe+OVWvTrgqNf2G9L7xPZYw0L784BJUCzRdBDaBeDYXxtvLKOo/ZXn4o0GUBEYWgBlCvhsI4PSW+zm09UhICWRIQcQhqAPVqKIwnZHWX49Re7zjSxMHdglAZEDkIagD1aiiMs3unav7oTGV4khQbE60MT5IWjM7UlQwkA/yKUd8AGrS0cI/m5Rdre/kh9UhJ0BUXtNVHxfuYkgUECUENoNGYkgUEH13fABqNKVlA8BHUABqNKVlA8BHUABqNKVlA8BHUABqNKVlA8BHUABqNKVlA8DHqGwAAi9GiBgDAYtyPGtxTGAAsRtd3hOMCFgBgN7q+IxwXsAAAuxHUEY4LWACA3QjqCMcFLADAbgR1hOMCFgBgNwaT4bTbGE4c3I0LWEQ4ZgIA9iCoUS++rCMTMwEAu9D1jTqd/LLetKtC3x2r1qZdFRr/wnotLdwT6tIQYMwEAOzCBU9Qp4a+rGlVNW9nmglATwsQXLSoUSembUWuhmYC0NMCBB9BDS0t3KPrnlqtXr9/V9c9tVpLC/cwbSuCNTQTgG5xIPgI6ghXXwvpim7nMW0rQjV0K0t6WoDg4xx1hKuvhfTRV/s1f3Qm07YiVHbv1DrPO6enxGvTrorT1tPTAgQOQR3hGmoh1fdljcg1Iau7xr+wXj+c1ElPCxBYdH1HOM5Foyka6hYHEBi0qCMcLSQ0FT0tQHDRoo5wtJAAwG5cQhQAAIvRogYAwGIENQAAFmMwGQC/4BrgQGBwjhrAOePWmEDghLTre+XKlRo2bJg6duwox3G0ZMmSBvfPz8+X4zinPfbs4YYAQChxDXAgcELa9X348GFlZGRo7NixuuGGGxp93NatW2u1htu3bx+I8sJOQ12PdEuisc70WalrO9cABwLHmq5vx3G0ePFiDR8+vN598vPzlZWVpQMHDigpKemsXqe5dn031PUoqcFuSQIeJ52pC7u+7V2TY7Vj/5HTni/Dk6Q3Jw4MaM1AcxeWg8n69u2rqqoq/ehHP9L06dM1cGD9XwRVVVWqqqryLXu93mCUGHQNdj3W8bfYD7slf/jFe/LuWXUF/A+3EdbNU0Ofo+zeqfVul04ENle4A/wvrKZndejQQfPnz9frr7+u119/XR6PR4MHD9aGDRvqPWbmzJlyu92+h8fjCWLFwdNQ12ND2xr6Yua8Y+Q5Uxd2fdv3HqriCndAgIRVi7pnz57q2bOnb/mKK65QcXGxZs2apby8vDqPyc3N1eTJk33LXq+3WYZ1g7cfNKbebdv21H0OcXv5oboa4r5taJ7OdBvLhrZzDXAgMMKqRV2XAQMGqKjo9JbfSS6XS4mJibUezdGErO5ynNrrTnY9NrStobtncWetyNPQZ6Ux2wH4X9gHdUFBgTp06BDqMkKuoZtrNLTtbAMezdOZbtLCTVyA4AvpqO/Kykpfa7hfv356/PHHlZWVpeTkZHXp0kW5ubnavXu3Fi1aJEmaPXu2zj//fPXu3Vvff/+9/vKXv+jJJ5/Ue++9p5/97GeNes3mOur7XCwt3KN5+cXaXn5IPVISNHFwN98Xb0PbAACBF9Jz1OvWrVNWVpZv+eS55JycHC1cuFBlZWUqLS31bT969Kh+85vfaPfu3YqNjVWfPn30wQcf1HoONF1D5xY57wgAoWXNPOpgoUUNAAgnYX+OGgCA5oygBgDAYmE1jxqBwWVCAcBenKOOcNyeEADsRtd3hOMyoQBgN4I6wnF7QgCwG0Ed4bhMKADYjaCOcFwmFADsxmAycJlQNAmzBIDgIqgBNBqzBIDgo+sbQKMxSwAIPoIaQKMxSwAIPoIaQKMxSwAIPoIaQKMxSwAIPoIaQKNl907V/NGZyvAkKTYmWhmeJC0YncksASCAGPUNAIDFaFEDAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYLGQBvXKlSs1bNgwdezYUY7jaMmSJY0+ds2aNWrRooX69u0bsPoAAAi1kAb14cOHlZGRoblz5zbpuIMHD+rWW2/Vz372swBVBgCAHVqE8sWvvvpqXX311U0+bvz48Ro1apSio6Ob1AoHACDchN056ueee05fffWVpk2bFupSAAAIuJC2qJtq+/btuu+++7Rq1Sq1aNG40quqqlRVVeVb9nq9gSoPAAC/C5sWdXV1tUaNGqUZM2YoPT290cfNnDlTbrfb9/B4PAGsEgAA/3KMMSbURUiS4zhavHixhg8fXuf2gwcPqk2bNoqOjvatq6mpkTFG0dHReu+99zRkyJDTjqurRe3xeFRRUaHExES//xwAAPhT2HR9JyYmavPmzbXWzZs3T8uWLdNrr72m888/v87jXC6XXC5XMEoEAMDvQhrUlZWVKioq8i2XlJSooKBAycnJ6tKli3Jzc7V7924tWrRIUVFR+tGPflTr+Pbt26tVq1anrQcAoLkIaVCvW7dOWVlZvuXJkydLknJycrRw4UKVlZWptLQ0VOUBABBy1pyjDhav1yu32805agBAWAibUd8AAEQighoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLnVVQFxcX6/7779fIkSO1d+9eSdI777yjwsJCvxYHAECka3JQr1ixQhdffLHWrl2rN954Q5WVlZKkTZs2adq0aX4vEACASNbkoL7vvvv00EMP6f3331dMTIxv/ZAhQ/T3v//dr8UBABDpmhzUmzdv1vXXX3/a+vbt22vfvn1+KQoAAJzQ5KBOSkpSWVnZaes3btyoTp06+aUoAABwQpOD+uabb9a9996rPXv2yHEc1dTUaM2aNZoyZYpuvfXWQNQIAEDEcowxpikHHD16VBMnTtTChQtVXV2tFi1aqLq6WqNGjdLChQsVHR0dqFr9wuv1yu12q6KiQomJiaEuBwCABjU5qE8qLS3V559/rsrKSvXr1089evTwd20BQVADAMLJWQd1uCKoAQDhpEVTDzDG6LXXXtPy5cu1d+9e1dTU1Nr+xhtv+K04AAAiXZOD+p577tGCBQuUlZWllJQUOY4TiLoAAIDOous7OTlZL7zwgq655ppA1RRQdH0DAMJJk6dnud1uXXDBBYGoBQAAnKLJQT19+nTNmDFD3333XSDqAQAAP9Dkc9QjRozQSy+9pPbt2ystLU0tW7astX3Dhg1+Kw4AgEjX5KDOycnR+vXrNXr0aAaTAQAQYE0eTBYXF6elS5fqxz/+caBqCigGkwEAwkmTz1F7PB4CDgCAIGlyUD/22GP67W9/qx07dgSgHAAA8ENN7vpu06aNjhw5ouPHjys2Nva0wWTffvutXwv0N7q+AQDhpMmDyWbPnh2AMgAAQF24KQcAABZrVIva6/X6Qs3r9Ta4L+EHAID/NCqo27Rpo7KyMrVv315JSUl1zp02xshxHFVXV/u9SAAAIlWjgnrZsmVKTk6WJD333HPyeDyKjo6utU9NTY1KS0v9XyEAABGsyeeoo6Ojfa3rH9q/f7/at29vfYuac9QAgHDS5HnUJ7u4T1VZWalWrVr5pSgAAHBCo6dnTZ48WZLkOI5+//vfKzY21returpaa9euVd++ff1eIAAAkazRQb1x40ZJJ1rUmzdvVkxMjG9bTEyMMjIyNGXKFP9XCABABGvyOerbbrtNc+bMCdvzu5yjBgCEEy54AgCAxZo8mAwAAAQPQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsFhIg3rlypUaNmyYOnbsKMdxtGTJkgb3X716tQYOHKi2bduqdevWuvDCCzVr1qzgFAsAQAi0COWLHz58WBkZGRo7dqxuuOGGM+4fFxenu+66S3369FFcXJxWr16tO+64Q3FxcfrVr34VhIoBAAguxxhjQl2EJDmOo8WLF2v48OFNOu6GG25QXFyc8vLyGrW/1+uV2+1WRUWFEhMTz6JSAACCJ6zPUW/cuFEfffSRBg0aVO8+VVVV8nq9tR4AAISLsAzqzp07y+VyqX///po4caJ++ctf1rvvzJkz5Xa7fQ+PxxPESgEAODdhGdSrVq3SunXrNH/+fM2ePVsvvfRSvfvm5uaqoqLC99i5c2cQKwUA4NyEdDDZ2Tr//PMlSRdffLHKy8s1ffp0jRw5ss59XS6XXC5XMMsDAMBvwrJF/UM1NTWqqqoKdRkAAARESFvUlZWVKioq8i2XlJSooKBAycnJ6tKli3Jzc7V7924tWrRIkjR37lx16dJFF154oaQT87D//Oc/a9KkSSGpHwCAQAtpUK9bt05ZWVm+5cmTJ0uScnJytHDhQpWVlam0tNS3vaamRrm5uSopKVGLFi3UrVs3PfLII7rjjjuCXjsAAMFgzTzqYGEeNQAgnIT9OWoAAJozghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLhTSoV65cqWHDhqljx45yHEdLlixpcP833nhDQ4cOVbt27ZSYmKjLL79cS5cuDU6xAACEQEiD+vDhw8rIyNDcuXMbtf/KlSs1dOhQvf3221q/fr2ysrI0bNgwbdy4McCVAgAQGo4xxoS6CElyHEeLFy/W8OHDm3Rc7969ddNNN+mBBx5o1P5er1dut1sVFRVKTEw8i0oBAAieFqEu4FzU1NTo0KFDSk5OrnefqqoqVVVV+Za9Xm8wSgMAwC/CejDZn//8Z1VWVmrEiBH17jNz5ky53W7fw+PxBLFCAADOTdgG9f/8z/9oxowZeuWVV9S+fft698vNzVVFRYXvsXPnziBWCQDAuQnLru+XX35Zv/zlL/Xqq6/q5z//eYP7ulwuuVyuIFUGAIB/hV2L+qWXXtJtt92ml156Sb/4xS9CXQ4AAAEV0hZ1ZWWlioqKfMslJSUqKChQcnKyunTpotzcXO3evVuLFi2SdKK7OycnR3PmzNGll16qPXv2SJJat24tt9sdkp8BAIBACun0rPz8fGVlZZ22PicnRwsXLtSYMWO0Y8cO5efnS5IGDx6sFStW1Lt/YzA9CwAQTqyZRx0sBDUAIJyE3TlqAAAiCUENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYLCwvIQoAsN/Swj2at7xI28orlZ4SrwlZ3ZXdOzXUZYUd5lEDAPxuaeEe3ZG3vtY6x5Hmj84krJuIrm8AgN/NW1502jpjpHn5xSGoJrwR1AAAv9tWXlnn+u3lh4JcSfgjqAEAfpeeEl/n+h4pCUGuJPwR1AAAv5uQ1V2OU3ud40gTB3cLTUFhjKAGAPhddu9UzR+dqQxPkmJjopXhSdKC0Zm6koFkTcaobwAALEaLGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMVahLoAAEDztLRwj+YtL9K28kqlp8RrQlZ3ZXM/6ibjftQAAL9bWrhHd+Str7XOcaT5ozMJ6yai6xsA4Hfzlhedts4YaV5+cQiqCW8ENQDA77aVV9a5fnv5oSBXEv4IagCA36WnxNe5vkdKQpArCX8ENQDA7yZkdZfj1F7nONLEwd1CU1AYI6gBAH6X3TtV80dnKsOTpNiYaGV4krRgdKauZCBZkzHqGwAAi9GiBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLcZtLAEDAcKvLc8cFTwAAAcGtLv2Drm8AQEBwq0v/IKgBAAHBrS79g6AGAAQEt7r0D4IaABAQ3OrSPwhqAEBAcKtL/2B6FgDAr5iS5V9MzwIA+A1TsvyPrm8AgN8wJcv/CGoAgN8wJcv/CGoAgN8wJcv/CGoAgN8wJcv/GEwGAPCrpYV7NC+/WNvLD6l9gkuSVO6tYgT4WQppi3rlypUaNmyYOnbsKMdxtGTJkgb3Lysr06hRo5Senq6oqCjdc889QakTANB42b1T9ebEgZp1U1/t2H9EO/Yf0XfHqrVpV4XGv7BeSwv3hLrEsBLSoD58+LAyMjI0d+7cRu1fVVWldu3a6f7771dGRkaAqwMAnAtGgPtHSC94cvXVV+vqq69u9P5paWmaM2eOJOnZZ58NVFkAAD9gBLh/MJgMABAQjAD3j2Yf1FVVVfJ6vbUeAIDAYwS4fzT7a33PnDlTM2bMCHUZABARTr3O9/ifdtNHX+3X9vJD6pGSoImDu3FTjiZq9kGdm5uryZMn+5a9Xq88Hk8IKwKA5unU63xv2lWhz3ZXcJ3vc9Tsg9rlcsnlcoW6DABo9hoa5U1Qn72QBnVlZaWKiv75xpaUlKigoEDJycnq0qWLcnNztXv3bi1atMi3T0FBge/Yb775RgUFBYqJidFFF10U7PIBAD/QlFHe3Aqz8UJ6ZbL8/HxlZWWdtj4nJ0cLFy7UmDFjtGPHDuXn5/u2OaeOTJDUtWtX7dixo1GvyZXJACAwrntqtTbtqjhtfYYnSW9OHOhb5laYTcMlRAEAfrG0cI/Gv7BeP0wVx5EWjM6sNYCssYGOE5r9OWoAQOA0NMr75HW+f/1yQa3ubS6E0jQENQDgrDQ0ylvSadvGv7Be80dnKj0lvs4WNRdCqVuzv+AJACAwGhrl3dA2LoTSNAQ1AOCsNNSF3dC27N6pmj86UxmeJMXGRCvDk3TaeWz8E13fAICz0mAXtjENdm9n905lhHcj0aIGAJyVhrqw6d72H6ZnAQDO2tLCPZqXX1zntbwb2obGI6gBALAY56gBAAHBZUL9gxY1AMDvuEyo/zCYDADgdw3No0bTENQAAL/jMqH+Q1ADAPwuPSW+zvVcJrTpCGoAgN8xj9p/CGoAgN9xmVD/YdQ3AAAWo0UNAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYi1CXUCwnbyrp9frDXElAIBIl5CQIMdxGtwn4oL60KFDkiSPxxPiSgAAka6iokKJiYkN7uOYk03MCFFTU6Ovv/66UX/FRBKv1yuPx6OdO3ee8UMD8HlBY/FZaRgt6jpERUWpc+fOoS7DWomJifxnQqPxeUFj8Vk5ewwmAwDAYgQ1AAAWI6ghSXK5XJo2bZpcLleoS0EY4POCxuKzcu4ibjAZAADhhBY1AAAWI6gBALAYQd3MTZ8+XX379m3SMYMHD9Y999wT8jqAugTi84ngsvk9tPG7iqBu5qZMmaIPP/ywSce88cYb+sMf/hCgimCD/Px8OY6jgwcPBuX1bP5iDle8h5Ej4i54EimMMaqurlZ8fLzi4+ObdGxycnKAqkK4OXr0qGJiYkJdBs4B72H4o0UdRqqqqjRp0iS1b99erVq10o9//GN9+umnkv751/U777yjzMxMuVwurV69+rRunOPHj2vSpElKSkpS27Ztde+99yonJ0fDhw/37XPqX85paWl6+OGHNXbsWCUkJKhLly76r//6r1q13XvvvUpPT1dsbKwuuOAC/f73v9exY8cC+euIeDU1NZo5c6bOP/98tW7dWhkZGXrttddkjNHPf/5zZWdn+25C8+2336pz58564IEHtGPHDmVlZUmS2rRpI8dxNGbMGEkn3vu77rpL99xzj8477zxlZ2dLkh5//HFdfPHFiouLk8fj0YQJE1RZWVmrnjVr1mjw4MGKjY1VmzZtlJ2drQMHDmjMmDFasWKF5syZI8dx5DiOduzYIUn6/PPPdfXVVys+Pl4pKSn6t3/7N+3bt8/3nIcPH9att96q+Ph4dejQQY899liAf6vBU9/7Jyni38OT31t5eXlKS0uT2+3WzTff7LtXg3Tie2n27Nm1juvbt6+mT5/uW3YcRwsWLNC1116r2NhY9erVSx9//LGKioo0ePBgxcXF6YorrlBxcfFpNSxYsEAej0exsbEaMWKEKioqfNs+/fRTDR06VOedd57cbrcGDRqkDRs2nPHnOmsGYWPSpEmmY8eO5u233zaFhYUmJyfHtGnTxuzfv98sX77cSDJ9+vQx7733nikqKjL79+8306ZNMxkZGb7neOihh0xycrJ54403zJYtW8z48eNNYmKiue6663z7DBo0yPz617/2LXft2tUkJyebuXPnmu3bt5uZM2eaqKgo8+WXX/r2+cMf/mDWrFljSkpKzFtvvWVSUlLMI4884tt+ah04dw899JC58MILzbvvvmuKi4vNc889Z1wul8nPzze7du0ybdq0MbNnzzbGGHPjjTeaAQMGmGPHjpnjx4+b119/3UgyW7duNWVlZebgwYPGmBPvfXx8vJk6dar58ssvfe/xrFmzzLJly0xJSYn58MMPTc+ePc2dd97pq2Xjxo3G5XKZO++80xQUFJjPP//cPPnkk+abb74xBw8eNJdffrm5/fbbTVlZmSkrKzPHjx83Bw4cMO3atTO5ublmy5YtZsOGDWbo0KEmKyvL97x33nmn6dKli/nggw/MZ599Zq699lqTkJBQ6/MZrhp6/4wxEf0eTps2zcTHx5sbbrjBbN682axcudKkpqaa//iP//Dt07VrVzNr1qxax2VkZJhp06b5liWZTp06mb/+9a9m69atZvjw4SYtLc0MGTLEvPvuu+aLL74wl112mbnqqqtqvXZcXJwZMmSI2bhxo1mxYoXp3r27GTVqlG+fDz/80OTl5ZktW7aYL774wowbN86kpKQYr9fbyHe/aQjqMFFZWWlatmxpXnzxRd+6o0ePmo4dO5pHH33UF9RLliypddypAZmSkmL+9Kc/+ZaPHz9uunTpcsagHj16tG+5pqbGtG/f3jz99NP11vunP/3JZGZm1lsHzs33339vYmNjzUcffVRr/bhx48zIkSONMca88sorplWrVua+++4zcXFxZtu2bb79Tn5eDhw4UOv4QYMGmX79+p3x9V999VXTtm1b3/LIkSPNwIED693/1M+UMSf+uLvyyitrrdu5c6cvfA4dOmRiYmLMK6+84tu+f/9+07p167AP6sa8f8ZE7ns4bdo0ExsbWyv4pk6dai699FLfcmOD+v777/ctf/zxx0aSeeaZZ3zrXnrpJdOqVatarx0dHW127drlW/fOO++YqKgoU1ZWVme91dXVJiEhwfzv//5vvT/TueAcdZgoLi7WsWPHNHDgQN+6li1basCAAdqyZYsuueQSSVL//v3rfY6KigqVl5drwIABvnXR0dHKzMxUTU1Ng6/fp08f378dx1Fqaqr27t3rW/fXv/5VTzzxhIqLi1VZWanjx49zAf4AKioq0pEjRzR06NBa648ePap+/fpJkm688UYtXrxY//mf/6mnn35aPXr0aNRzZ2Zmnrbugw8+0MyZM/Xll1/K6/Xq+PHj+v7773XkyBHFxsaqoKBAN954Y5N+hk2bNmn58uV1jqEoLi7Wd999p6NHj+rSSy/1rU9OTlbPnj2b9Do2asz7J0X2e5iWlqaEhATfcocOHWp95zTWD7+7UlJSJEkXX3xxrXXff/+9vF6v7zurS5cu6tSpk2+fyy+/XDU1Ndq6datSU1NVXl6u+++/X/n5+dq7d6+qq6t15MgRlZaWNrm+xiCom5m4uLiAPG/Lli1rLTuO4wv3jz/+WLfccotmzJih7Oxsud1uvfzyy83qfKJtTp5b/Nvf/lbrC0WS71KNR44c0fr16xUdHa3t27c3+rlP/Qzt2LFD1157re6880798Y9/VHJyslavXq1x48bp6NGjio2NVevWrc/qZxg2bJgeeeSR07Z16NBBRUVFTX7OcNGY90+K7Pewoe8c6cSdEM0pF9asa1zMD5/n5O0k61p3psbKD+Xk5Gj//v2aM2eOunbtKpfLpcsvv1xHjx5t9HM0BYPJwkS3bt0UExOjNWvW+NYdO3ZMn376qS666KJGPYfb7VZKSopvAJokVVdXn/MgiI8++khdu3bV7373O/Xv3189evTQP/7xj3N6TjTsoosuksvlUmlpqbp3717r4fF4JEm/+c1vFBUVpXfeeUdPPPGEli1b5jv+5Cjg6urqM77W+vXrVVNTo8cee0yXXXaZ0tPT9fXXX9fap0+fPg1OA4yJiTnttf7lX/5FhYWFSktLO+1niIuLU7du3dSyZUutXbvWd8yBAwe0bdu2M/+CLNeY90/iPWxIu3btVFZW5lv2er0qKSk55+eVpNLS0lq/n7///e+Kiory9QSsWbNGkyZN0jXXXKPevXvL5XLVGkDnbwR1mIiLi9Odd96pqVOn6t1339UXX3yh22+/XUeOHNG4ceMa/Tx33323Zs6cqTfffFNbt27Vr3/9ax04cOCMNy5vSI8ePVRaWqqXX35ZxcXFeuKJJ7R48eKzfj6cWUJCgqZMmaJ///d/1/PPP6/i4mJt2LBBTz75pJ5//nn97W9/07PPPqsXX3xRQ4cO1dSpU5WTk6MDBw5Ikrp27SrHcfR///d/+uabb04b/ftD3bt317Fjx/Tkk0/qq6++Ul5enubPn19rn9zcXH366aeaMGGCPvvsM3355Zd6+umnfV9eaWlpWrt2rXbs2KF9+/appqZGEydO1LfffquRI0fq008/VXFxsZYuXarbbrvNN7Vw3Lhxmjp1qpYtW6bPP/9cY8aMUVRU+H9tnen9k8R7eAZDhgxRXl6eVq1apc2bNysnJ0fR0dHn/LyS1KpVK+Xk5GjTpk1atWqVJk2apBEjRig1NVXSie+8vLw8bdmyRWvXrtUtt9xyVj0SjRaQM98IiO+++87cfffd5rzzzjMul8sMHDjQfPLJJ8aY+geWnDqI69ixY+auu+4yiYmJpk2bNubee+81N954o7n55pt9+9Q1mOxMgzamTp1q2rZta+Lj481NN91kZs2aZdxud7114NzV1NSY2bNnm549e5qWLVuadu3amezsbJOfn29SUlLMww8/7Nv36NGjJjMz04wYMcK37sEHHzSpqanGcRyTk5NjjKl7wJAxxjz++OOmQ4cOpnXr1iY7O9ssWrTotM9bfn6+ueKKK4zL5TJJSUkmOzvbt33r1q3msssuM61btzaSTElJiTHGmG3btpnrr7/eJCUlmdatW5sLL7zQ3HPPPaampsYYY8yhQ4fM6NGjTWxsrElJSTGPPvpovTWGm/revxUrVpi9e/dG9HtY1/fFrFmzTNeuXX3LFRUV5qabbjKJiYnG4/GYhQsX1jmYbPHixb7lkpISI8ls3LjRt+7U786Trz1v3jzTsWNH06pVK/Ov//qv5ttvv/Uds2HDBtO/f3/TqlUr06NHD/Pqq6/W+T3pL9w9K8LV1NSoV69eGjFiBFcjAwALMZgswvzjH//Qe++9p0GDBqmqqkpPPfWUSkpKNGrUqFCXBgCoQ/if7EGTREVFaeHChbrkkks0cOBAbd68WR988IF69eoV6tIAAHWg6xsAAIvRogYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAPNiDFGv/rVr5ScnCzHcVRQUBCSOnbs2BHS1weaE6ZnAc3IO++8o+uuu075+fm64IILdN5556lFi8Be12jMmDE6ePCglixZ4ltXXV2tb775JiivDzR3/A8CmpHi4mJ16NBBV1xxRUjriI6O9t3AAMC5oesbaCbGjBmju+++W6WlpXIcR2lpaUpLS9Ps2bNr7de3b19Nnz7dt+w4jv7yl7/o+uuvV2xsrHr06KG33nqr1jGFhYW69tprlZiYqISEBP3kJz9RcXGxpk+frueff15vvvmmHMeR4zjKz8+vs+t7xYoVGjBggFwulzp06KD77rtPx48f920fPHiwJk2apN/+9rdKTk5WampqrTqBSEVQA83EnDlz9OCDD6pz584qKyurdd/xM5kxY4ZGjBihzz77TNdcc41uueUWffvtt5Kk3bt366c//alcLpeWLVum9evXa+zYsTp+/LimTJmiESNG6KqrrlJZWZnKysrqbM3v3r1b11xzjS655BJt2rRJTz/9tJ555hk99NBDtfZ7/vnnFRcXp7Vr1+rRRx/Vgw8+qPfff//cfjFAmKPrG2gm3G63EhISzqrbecyYMRo5cqQk6eGHH9YTTzyhTz75RFdddZXmzp0rt9utl19+WS1btpQkpaen+45t3bq1qqqqGnzNefPmyePx6KmnnpLjOLrwwgv19ddf695779UDDzzguz9xnz59NG3aNEkn7vn71FNP6cMPP9TQoUOb9PMAzQktagDq06eP799xcXFKTEzU3r17JUkFBQX6yU9+4gvps7FlyxZdfvnlchzHt27gwIGqrKzUrl276qxDkjp06OCrA4hUBDXQjEVFRenUiR3Hjh07bb9TQ9hxHNXU1Eg60WIOlobqACIVQQ00Y+3atVNZWZlv2ev1qqSkpEnP0adPH61atarOgJekmJgYVVdXN/gcvXr10scff1zrj4Y1a9YoISFBnTt3blI9QKQhqIFmbMiQIcrLy9OqVau0efNm5eTkKDo6uknPcdddd8nr9ermm2/WunXrtH37duXl5Wnr1q2SpLS0NH322WfaunWr9u3bV2egT5gwQTt37tTdd9+tL7/8Um+++aamTZumyZMn+85PA6gb/0OAZiw3N1eDBg3Stddeq1/84hcaPny4unXr1qTnaNu2rZYtW6bKykoNGjRImZmZ+u///m9fN/Xtt9+unj17qn///mrXrp3WrFlz2nN06tRJb7/9tj755BNlZGRo/PjxGjdunO6//36//JxAc8aVyQAAsBgtagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABY7P8B0daK/soSNGUAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
+ "text/latex": [
+ "\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{X}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}isfinite}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{var}\\PY{p}{(}\\PY{l+s+s2}{\\PYZdq{}}\\PY{l+s+s2}{y}\\PY{l+s+s2}{\\PYZdq{}}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}dtype}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int64}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}shape}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{assume\\PYZus{}value\\PYZus{}one\\PYZus{}of}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2}\\PY{p}{,} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{=} \\PY{n}{astype}\\PY{p}{(}\n",
+ " \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{vector}\\PY{p}{(}\\PY{n}{TupleValue}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleValue}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,}\n",
+ " \\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{,}\n",
+ "\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1000000.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{=} \\PY{n}{zeros}\\PY{p}{(}\\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleInt}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{20}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalDType}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{DType}\\PY{o}{.}\\PY{n}{float64}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalDevice}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{o}{.}\\PY{n}{device}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{=} \\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
+ "\\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1} \\PY{o}{=} \\PY{n}{OptionalIntOrTuple}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{IntOrTuple}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]} \\PY{o}{=} \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2} \\PY{o}{=} \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}6} \\PY{o}{=} \\PY{n}{\\PYZus{}NDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}2} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]} \\PY{o}{=} \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{=} \\PY{n}{concat}\\PY{p}{(}\\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}5} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}1}\\PY{p}{]}\\PY{p}{)} \\PY{o}{+} \\PY{n}{TupleNDArray}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}6} \\PY{o}{\\PYZhy{}} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{[}\\PY{n}{\\PYZus{}IndexKey\\PYZus{}2}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}8} \\PY{o}{=} \\PY{n}{square}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{\\PYZhy{}} \\PY{n}{expand\\PYZus{}dims}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}9} \\PY{o}{=} \\PY{n}{sqrt}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{p}{,} \\PY{n}{\\PYZus{}OptionalIntOrTuple\\PYZus{}1}\\PY{p}{)} \\PY{o}{/} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}8}\\PY{o}{.}\\PY{n}{shape}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}10} \\PY{o}{=} \\PY{n}{copy}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}9}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}10}\\PY{p}{[}\\PY{n}{ndarray\\PYZus{}index}\\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}9} \\PY{o}{==} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]} \\PY{o}{=} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\\PY{n}{sqrt}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)} \\PY{o}{/} \\PY{n}{Float}\\PY{o}{.}\\PY{n}{from\\PYZus{}int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{999998}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}7} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}10}\\PY{p}{)}\\PY{p}{,} \\PY{n}{FALSE}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}Slice\\PYZus{}1} \\PY{o}{=} \\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\\PY{o}{.}\\PY{n}{to\\PYZus{}int}\\PY{p}{)}\\PY{p}{)}\n",
+ "\\PY{n}{\\PYZus{}NDArray\\PYZus{}11} \\PY{o}{=} \\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{)} \\PY{o}{+} \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{/} \\PY{n}{\\PYZus{}NDArray\\PYZus{}10}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{/} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}1}\\PY{p}{[}\n",
+ " \\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\n",
+ "\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{\\PYZus{}Slice\\PYZus{}1}\\PY{p}{)}\\PY{p}{]}\n",
+ "\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2} \\PY{o}{=} \\PY{n}{svd}\\PY{p}{(}\n",
+ " \\PY{p}{(}\\PY{n}{sqrt}\\PY{p}{(}\\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1000000}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}NDArray\\PYZus{}3}\\PY{p}{)} \\PY{o}{*} \\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{1.0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}4} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T}\\PY{p}{)}\\PY{o}{.}\\PY{n}{T} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}11}\\PY{p}{,} \\PY{n}{FALSE}\n",
+ "\\PY{p}{)}\n",
+ "\\PY{p}{(}\n",
+ " \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}1} \\PY{o}{\\PYZhy{}} \\PY{p}{(}\\PY{n}{\\PYZus{}NDArray\\PYZus{}3} \\PY{o}{@} \\PY{n}{\\PYZus{}NDArray\\PYZus{}4}\\PY{p}{)}\\PY{p}{)}\n",
+ " \\PY{o}{@} \\PY{p}{(}\n",
+ " \\PY{n}{\\PYZus{}NDArray\\PYZus{}11}\n",
+ " \\PY{o}{@} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{2}\\PY{p}{)}\\PY{p}{]}\\PY{o}{.}\\PY{n}{T}\\PY{p}{[}\n",
+ " \\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\n",
+ " \\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1}\n",
+ " \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\n",
+ " \\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\n",
+ " \\PY{n}{Slice}\\PY{p}{(}\n",
+ " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,}\n",
+ " \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\n",
+ " \\PY{n+nb}{sum}\\PY{p}{(}\\PY{n}{astype}\\PY{p}{(}\\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]} \\PY{o}{\\PYZgt{}} \\PY{p}{(}\\PY{n}{NDArray}\\PY{o}{.}\\PY{n}{scalar}\\PY{p}{(}\\PY{n}{Value}\\PY{o}{.}\\PY{n}{float}\\PY{p}{(}\\PY{n}{Float}\\PY{p}{(}\\PY{l+m+mf}{0.0001}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)} \\PY{o}{*} \\PY{n}{\\PYZus{}TupleNDArray\\PYZus{}2}\\PY{p}{[}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{]}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{int}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{0}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\\PY{p}{)}\\PY{p}{,} \\PY{n}{DType}\\PY{o}{.}\\PY{n}{int32}\\PY{p}{)}\\PY{p}{)}\n",
+ " \\PY{o}{.}\\PY{n}{to\\PYZus{}value}\\PY{p}{(}\\PY{p}{)}\n",
+ " \\PY{o}{.}\\PY{n}{to\\PYZus{}int}\n",
+ " \\PY{p}{)}\\PY{p}{,}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{)}\n",
+ " \\PY{p}{]}\n",
+ " \\PY{p}{)}\n",
+ "\\PY{p}{)}\\PY{p}{[}\\PY{n}{IndexKey}\\PY{o}{.}\\PY{n}{multi\\PYZus{}axis}\\PY{p}{(}\\PY{n}{\\PYZus{}MultiAxisIndexKey\\PYZus{}1} \\PY{o}{+} \\PY{n}{MultiAxisIndexKey}\\PY{p}{(}\\PY{n}{MultiAxisIndexKeyItem}\\PY{o}{.}\\PY{n}{slice}\\PY{p}{(}\\PY{n}{Slice}\\PY{p}{(}\\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{none}\\PY{p}{,} \\PY{n}{OptionalInt}\\PY{o}{.}\\PY{n}{some}\\PY{p}{(}\\PY{n}{Int}\\PY{p}{(}\\PY{l+m+mi}{1}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{)}\\PY{p}{]}\n",
+ "\\end{Verbatim}\n"
],
- "source": [
- "import seaborn as sns\n",
- "\n",
- "df_melt = pd.melt(df, var_name=\"function\", value_name=\"time\")\n",
- "_ = sns.catplot(data=df_melt, x=\"function\", y=\"time\", kind=\"swarm\")"
+ "text/plain": [
+ "_NDArray_1 = NDArray.var(\"X\")\n",
+ "assume_dtype(_NDArray_1, DType.float64)\n",
+ "assume_shape(_NDArray_1, TupleInt(Int(1000000)) + TupleInt(Int(20)))\n",
+ "assume_isfinite(_NDArray_1)\n",
+ "_NDArray_2 = NDArray.var(\"y\")\n",
+ "assume_dtype(_NDArray_2, DType.int64)\n",
+ "assume_shape(_NDArray_2, TupleInt(Int(1000000)))\n",
+ "assume_value_one_of(_NDArray_2, TupleValue(Value.int(Int(0))) + TupleValue(Value.int(Int(1))))\n",
+ "_NDArray_3 = astype(\n",
+ " NDArray.vector(TupleValue(sum(_NDArray_2 == NDArray.scalar(Value.int(Int(0)))).to_value()) + TupleValue(sum(_NDArray_2 == NDArray.scalar(Value.int(Int(1)))).to_value())),\n",
+ " DType.float64,\n",
+ ") / NDArray.scalar(Value.float(Float(1000000.0)))\n",
+ "_NDArray_4 = zeros(TupleInt(Int(2)) + TupleInt(Int(20)), OptionalDType.some(DType.float64), OptionalDevice.some(_NDArray_1.device))\n",
+ "_MultiAxisIndexKey_1 = MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice()))\n",
+ "_IndexKey_1 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(0))) + _MultiAxisIndexKey_1)\n",
+ "_NDArray_5 = _NDArray_1[ndarray_index(_NDArray_2 == NDArray.scalar(Value.int(Int(0))))]\n",
+ "_OptionalIntOrTuple_1 = OptionalIntOrTuple.some(IntOrTuple.int(Int(0)))\n",
+ "_NDArray_4[_IndexKey_1] = sum(_NDArray_5, _OptionalIntOrTuple_1) / NDArray.scalar(Value.int(_NDArray_5.shape[Int(0)]))\n",
+ "_IndexKey_2 = IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.int(Int(1))) + _MultiAxisIndexKey_1)\n",
+ "_NDArray_6 = _NDArray_1[ndarray_index(_NDArray_2 == NDArray.scalar(Value.int(Int(1))))]\n",
+ "_NDArray_4[_IndexKey_2] = sum(_NDArray_6, _OptionalIntOrTuple_1) / NDArray.scalar(Value.int(_NDArray_6.shape[Int(0)]))\n",
+ "_NDArray_7 = concat(TupleNDArray(_NDArray_5 - _NDArray_4[_IndexKey_1]) + TupleNDArray(_NDArray_6 - _NDArray_4[_IndexKey_2]), OptionalInt.some(Int(0)))\n",
+ "_NDArray_8 = square(_NDArray_7 - expand_dims(sum(_NDArray_7, _OptionalIntOrTuple_1) / NDArray.scalar(Value.int(_NDArray_7.shape[Int(0)]))))\n",
+ "_NDArray_9 = sqrt(sum(_NDArray_8, _OptionalIntOrTuple_1) / NDArray.scalar(Value.int(_NDArray_8.shape[Int(0)])))\n",
+ "_NDArray_10 = copy(_NDArray_9)\n",
+ "_NDArray_10[ndarray_index(_NDArray_9 == NDArray.scalar(Value.int(Int(0))))] = NDArray.scalar(Value.float(Float(1.0)))\n",
+ "_TupleNDArray_1 = svd(sqrt(NDArray.scalar(Value.float(Float(1.0) / Float.from_int(Int(999998))))) * (_NDArray_7 / _NDArray_10), FALSE)\n",
+ "_Slice_1 = Slice(OptionalInt.none, OptionalInt.some(sum(astype(_TupleNDArray_1[Int(1)] > NDArray.scalar(Value.float(Float(0.0001))), DType.int32)).to_value().to_int))\n",
+ "_NDArray_11 = (_TupleNDArray_1[Int(2)][IndexKey.multi_axis(MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(_Slice_1)) + _MultiAxisIndexKey_1)] / _NDArray_10).T / _TupleNDArray_1[\n",
+ " Int(1)\n",
+ "][IndexKey.slice(_Slice_1)]\n",
+ "_TupleNDArray_2 = svd(\n",
+ " (sqrt((NDArray.scalar(Value.int(Int(1000000))) * _NDArray_3) * NDArray.scalar(Value.float(Float(1.0)))) * (_NDArray_4 - (_NDArray_3 @ _NDArray_4)).T).T @ _NDArray_11, FALSE\n",
+ ")\n",
+ "(\n",
+ " (_NDArray_1 - (_NDArray_3 @ _NDArray_4))\n",
+ " @ (\n",
+ " _NDArray_11\n",
+ " @ _TupleNDArray_2[Int(2)].T[\n",
+ " IndexKey.multi_axis(\n",
+ " _MultiAxisIndexKey_1\n",
+ " + MultiAxisIndexKey(\n",
+ " MultiAxisIndexKeyItem.slice(\n",
+ " Slice(\n",
+ " OptionalInt.none,\n",
+ " OptionalInt.some(\n",
+ " sum(astype(_TupleNDArray_2[Int(1)] > (NDArray.scalar(Value.float(Float(0.0001))) * _TupleNDArray_2[Int(1)][IndexKey.int(Int(0))]), DType.int32))\n",
+ " .to_value()\n",
+ " .to_int\n",
+ " ),\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " )\n",
+ " ]\n",
+ " )\n",
+ ")[IndexKey.multi_axis(_MultiAxisIndexKey_1 + MultiAxisIndexKey(MultiAxisIndexKeyItem.slice(Slice(OptionalInt.none, OptionalInt.some(Int(1))))))]"
]
- },
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from egglog.exp.array_api_numba import array_api_numba_module\n",
+ "\n",
+ "egraph = EGraph([array_api_numba_module])\n",
+ "egraph.register(X_r2_optimized)\n",
+ "egraph.run(10000)\n",
+ "X_r2_numba = egraph.extract(X_r2_optimized)\n",
+ "X_r2_numba"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "969490bb",
+ "metadata": {},
+ "source": [
+ "## Compiling back to Python source\n",
+ "\n",
+ "Now we finally have a version that we could run with Numba! However, this isn't in NumPy code. What Numba needs\n",
+ "is a function that uses `numpy`, not our typed dialect.\n",
+ "\n",
+ "So we use another module that provides a translation of all our methods into Python strings. The rules in it look like this:\n",
+ "\n",
+ "```python\n",
+ "# the sqrt of an array should use the `np.sqrt` function and be assigned to its own variable, so it can be reused\n",
+ "rewrite(ndarray_program(sqrt(x))).to((Program(\"np.sqrt(\") + ndarray_program(x) + \")\").assign())\n",
+ "\n",
+ "# To compile a setitem call, we first compile the source, assign it to a variable, then add an assignment statement\n",
+ "mod_x = copy(x)\n",
+ "mod_x[idx] = y\n",
+ "assigned_x = ndarray_program(x).assign()\n",
+ "yield rewrite(ndarray_program(mod_x)).to(\n",
+ " assigned_x.statement(assigned_x + \"[\" + index_key_program(idx) + \"] = \" + ndarray_program(y))\n",
+ ")\n",
+ "```\n",
+ "\n",
+ "We pull in all those rewrite rules from the [`egglog.exp.array_api_program_gen` module](https://github.com/egraphs-good/egglog-python/blob/main/python/egglog/exp/array_api_program_gen.py).\n",
+ "They depend on another module, [`egglog.exp.program_gen` module](https://github.com/egraphs-good/egglog-python/blob/main/python/egglog/exp/program_gen.py), which provides generic translations\n",
+ "from expressions and statements into strings.\n",
+ "\n",
+ "We can run these rules to get out a Python function object:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "3aeae673",
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "markdown",
- "id": "83eab582",
- "metadata": {},
- "source": [
- "We see that the numba version is in fact faster, and the other two are about the same. It isn't significantly faster through,\n",
- "so we might want to run a profiler on the original function to see where most of the time is spent:\n"
- ]
- },
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "def __fn(X, y):\n",
+ " assert X.dtype == np.dtype(np.float64)\n",
+ " assert X.shape == (1000000, 20,)\n",
+ " assert np.all(np.isfinite(X))\n",
+ " assert y.dtype == np.dtype(np.int64)\n",
+ " assert y.shape == (1000000,)\n",
+ " assert set(np.unique(y)) == set((0, 1,))\n",
+ " _0 = y == np.array(0)\n",
+ " _1 = np.sum(_0)\n",
+ " _2 = y == np.array(1)\n",
+ " _3 = np.sum(_2)\n",
+ " _4 = np.array((_1, _3,)).astype(np.dtype(np.float64))\n",
+ " _5 = _4 / np.array(1000000.0)\n",
+ " _6 = np.zeros((2, 20,), dtype=np.dtype(np.float64))\n",
+ " _7 = np.sum(X[_0], axis=0)\n",
+ " _8 = _7 / np.array(X[_0].shape[0])\n",
+ " _6[0, :] = _8\n",
+ " _9 = np.sum(X[_2], axis=0)\n",
+ " _10 = _9 / np.array(X[_2].shape[0])\n",
+ " _6[1, :] = _10\n",
+ " _11 = _5 @ _6\n",
+ " _12 = X - _11\n",
+ " _13 = np.sqrt(np.array((1.0 / 999998)))\n",
+ " _14 = X[_0] - _6[0, :]\n",
+ " _15 = X[_2] - _6[1, :]\n",
+ " _16 = np.concatenate((_14, _15,), axis=0)\n",
+ " _17 = np.sum(_16, axis=0)\n",
+ " _18 = _17 / np.array(_16.shape[0])\n",
+ " _19 = np.expand_dims(_18, 0)\n",
+ " _20 = _16 - _19\n",
+ " _21 = np.square(_20)\n",
+ " _22 = np.sum(_21, axis=0)\n",
+ " _23 = _22 / np.array(_21.shape[0])\n",
+ " _24 = np.sqrt(_23)\n",
+ " _25 = _24 == np.array(0)\n",
+ " _24[_25] = np.array(1.0)\n",
+ " _26 = _16 / _24\n",
+ " _27 = _13 * _26\n",
+ " _28 = np.linalg.svd(_27, full_matrices=False)\n",
+ " _29 = _28[1] > np.array(0.0001)\n",
+ " _30 = _29.astype(np.dtype(np.int32))\n",
+ " _31 = np.sum(_30)\n",
+ " _32 = _28[2][:_31, :] / _24\n",
+ " _33 = _32.T / _28[1][:_31]\n",
+ " _34 = np.array(1000000) * _5\n",
+ " _35 = _34 * np.array(1.0)\n",
+ " _36 = np.sqrt(_35)\n",
+ " _37 = _6 - _11\n",
+ " _38 = _36 * _37.T\n",
+ " _39 = _38.T @ _33\n",
+ " _40 = np.linalg.svd(_39, full_matrices=False)\n",
+ " _41 = np.array(0.0001) * _40[1][0]\n",
+ " _42 = _40[1] > _41\n",
+ " _43 = _42.astype(np.dtype(np.int32))\n",
+ " _44 = np.sum(_43)\n",
+ " _45 = _33 @ _40[2].T[:, :_44]\n",
+ " _46 = _12 @ _45\n",
+ " return _46[:, :1]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from egglog.exp.array_api_program_gen import (\n",
+ " array_api_module_string,\n",
+ " ndarray_function_two,\n",
+ ")\n",
+ "\n",
+ "egraph = EGraph([array_api_module_string])\n",
+ "fn_program = ndarray_function_two(X_r2_numba, X_orig, y_orig)\n",
+ "egraph.register(fn_program)\n",
+ "egraph.run(10000)\n",
+ "fn = egraph.load_object(egraph.extract(fn_program.py_object))\n",
+ "import inspect\n",
+ "\n",
+ "print(inspect.getsource(fn))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6e0405c8",
+ "metadata": {},
+ "source": [
+ "We can verify that the function gives the same result:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "a807d66c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "assert np.allclose(run_lda(X_np, y_np), fn(X_np, y_np))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b2a3f1ed",
+ "metadata": {},
+ "source": [
+ "Although it isn't the prettiest, we can see that it has only emitted each expression once, for common subexpression\n",
+ "elimination, and preserves the \"imperative\" aspects of setitem.\n",
+ "\n",
+ "## Compiling to Numba\n",
+ "\n",
+ "Now we finally have a function we can run with numba:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "39a69f23",
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 12,
- "id": "06d7777a",
- "metadata": {},
- "outputs": [],
- "source": [
- "%load_ext line_profiler"
- ]
- },
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/var/folders/xn/05ktz3056kqd9n8frgd6236h0000gn/T/egglog-9e61d62c-d17d-495b-b8db-f1eb3b38dcbb.py:56: NumbaPerformanceWarning: '@' is faster on contiguous arrays, called on (Array(float64, 2, 'C', False, aligned=True), Array(float64, 2, 'A', False, aligned=True))\n",
+ " _45 = _33 @ _40[2].T[:, :_44]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numba\n",
+ "\n",
+ "fn_numba = numba.njit(fastmath=True)(fn)\n",
+ "assert np.allclose(run_lda(X_np, y_np), fn_numba(X_np, y_np))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "078d41b3",
+ "metadata": {},
+ "source": [
+ "## Evaluating performance\n",
+ "\n",
+ "Let's see if it actually made anything quicker! Let's run a number of trials for the original function, our\n",
+ "extracted version, and the optimized extracted version:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "27a0cafc",
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 13,
- "id": "f88942d6",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Timer unit: 1e-09 s\n",
- "\n",
- "Total time: 1.41607 s\n",
- "File: /var/folders/xn/05ktz3056kqd9n8frgd6236h0000gn/T/egglog-9e61d62c-d17d-495b-b8db-f1eb3b38dcbb.py\n",
- "Function: __fn at line 1\n",
- "\n",
- "Line # Hits Time Per Hit % Time Line Contents\n",
- "==============================================================\n",
- " 1 def __fn(X, y):\n",
- " 2 1 13000.0 13000.0 0.0 assert X.dtype == np.dtype(np.float64)\n",
- " 3 1 2000.0 2000.0 0.0 assert X.shape == (1000000, 20,)\n",
- " 4 1 23813000.0 2e+07 1.7 assert np.all(np.isfinite(X))\n",
- " 5 1 11000.0 11000.0 0.0 assert y.dtype == np.dtype(np.int64)\n",
- " 6 1 14000.0 14000.0 0.0 assert y.shape == (1000000,)\n",
- " 7 1 23226000.0 2e+07 1.6 assert set(np.unique(y)) == set((0, 1,))\n",
- " 8 1 542000.0 542000.0 0.0 _0 = y == np.array(0)\n",
- " 9 1 488000.0 488000.0 0.0 _1 = np.sum(_0)\n",
- " 10 1 493000.0 493000.0 0.0 _2 = y == np.array(1)\n",
- " 11 1 454000.0 454000.0 0.0 _3 = np.sum(_2)\n",
- " 12 1 14000.0 14000.0 0.0 _4 = np.array((_1, _3,)).astype(np.dtype(np.float64))\n",
- " 13 1 9000.0 9000.0 0.0 _5 = _4 / np.array(1000000.0)\n",
- " 14 1 4000.0 4000.0 0.0 _6 = np.zeros((2, 20,), dtype=np.dtype(np.float64))\n",
- " 15 1 98376000.0 1e+08 6.9 _7 = np.sum(X[_0], axis=0)\n",
- " 16 1 38374000.0 4e+07 2.7 _8 = _7 / np.array(X[_0].shape[0])\n",
- " 17 1 6000.0 6000.0 0.0 _6[0, :] = _8\n",
- " 18 1 45697000.0 5e+07 3.2 _9 = np.sum(X[_2], axis=0)\n",
- " 19 1 35522000.0 4e+07 2.5 _10 = _9 / np.array(X[_2].shape[0])\n",
- " 20 1 6000.0 6000.0 0.0 _6[1, :] = _10\n",
- " 21 1 13000.0 13000.0 0.0 _11 = _5 @ _6\n",
- " 22 1 33768000.0 3e+07 2.4 _12 = X - _11\n",
- " 23 1 18000.0 18000.0 0.0 _13 = np.sqrt(np.array((1.0 / 999998)))\n",
- " 24 1 50544000.0 5e+07 3.6 _14 = X[_0] - _6[0, :]\n",
- " 25 1 55966000.0 6e+07 4.0 _15 = X[_2] - _6[1, :]\n",
- " 26 1 26138000.0 3e+07 1.8 _16 = np.concatenate((_14, _15,), axis=0)\n",
- " 27 1 23667000.0 2e+07 1.7 _17 = np.sum(_16, axis=0)\n",
- " 28 1 26000.0 26000.0 0.0 _18 = _17 / np.array(_16.shape[0])\n",
- " 29 1 45000.0 45000.0 0.0 _19 = np.expand_dims(_18, 0)\n",
- " 30 1 33604000.0 3e+07 2.4 _20 = _16 - _19\n",
- " 31 1 24774000.0 2e+07 1.7 _21 = np.square(_20)\n",
- " 32 1 21671000.0 2e+07 1.5 _22 = np.sum(_21, axis=0)\n",
- " 33 1 31000.0 31000.0 0.0 _23 = _22 / np.array(_21.shape[0])\n",
- " 34 1 4000.0 4000.0 0.0 _24 = np.sqrt(_23)\n",
- " 35 1 7000.0 7000.0 0.0 _25 = _24 == np.array(0)\n",
- " 36 1 3000.0 3000.0 0.0 _24[_25] = np.array(1.0)\n",
- " 37 1 32910000.0 3e+07 2.3 _26 = _16 / _24\n",
- " 38 1 24105000.0 2e+07 1.7 _27 = _13 * _26\n",
- " 39 1 814200000.0 8e+08 57.5 _28 = np.linalg.svd(_27, full_matrices=False)\n",
- " 40 1 23000.0 23000.0 0.0 _29 = _28[1] > np.array(0.0001)\n",
- " 41 1 10000.0 10000.0 0.0 _30 = _29.astype(np.dtype(np.int32))\n",
- " 42 1 63000.0 63000.0 0.0 _31 = np.sum(_30)\n",
- " 43 1 14000.0 14000.0 0.0 _32 = _28[2][:_31, :] / _24\n",
- " 44 1 7000.0 7000.0 0.0 _33 = _32.T / _28[1][:_31]\n",
- " 45 1 9000.0 9000.0 0.0 _34 = np.array(1000000) * _5\n",
- " 46 1 4000.0 4000.0 0.0 _35 = _34 * np.array(1.0)\n",
- " 47 1 3000.0 3000.0 0.0 _36 = np.sqrt(_35)\n",
- " 48 1 5000.0 5000.0 0.0 _37 = _6 - _11\n",
- " 49 1 4000.0 4000.0 0.0 _38 = _36 * _37.T\n",
- " 50 1 11000.0 11000.0 0.0 _39 = _38.T @ _33\n",
- " 51 1 70000.0 70000.0 0.0 _40 = np.linalg.svd(_39, full_matrices=False)\n",
- " 52 1 6000.0 6000.0 0.0 _41 = np.array(0.0001) * _40[1][0]\n",
- " 53 1 3000.0 3000.0 0.0 _42 = _40[1] > _41\n",
- " 54 1 4000.0 4000.0 0.0 _43 = _42.astype(np.dtype(np.int32))\n",
- " 55 1 18000.0 18000.0 0.0 _44 = np.sum(_43)\n",
- " 56 1 8000.0 8000.0 0.0 _45 = _33 @ _40[2].T[:, :_44]\n",
- " 57 1 7242000.0 7e+06 0.5 _46 = _12 @ _45\n",
- " 58 1 7000.0 7000.0 0.0 return _46[:, :1]"
- ]
- }
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " original \n",
+ " extracted \n",
+ " extracted numba \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1.482975 \n",
+ " 1.609354 \n",
+ " 1.086486 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1.498656 \n",
+ " 1.504704 \n",
+ " 1.145331 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1.500998 \n",
+ " 1.557253 \n",
+ " 1.090356 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1.519732 \n",
+ " 1.548800 \n",
+ " 1.122623 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1.500420 \n",
+ " 1.501195 \n",
+ " 1.113089 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 1.587211 \n",
+ " 1.522518 \n",
+ " 1.176842 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 1.499479 \n",
+ " 1.526887 \n",
+ " 1.095296 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 1.639910 \n",
+ " 1.500859 \n",
+ " 1.086477 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 1.525145 \n",
+ " 1.559202 \n",
+ " 1.103662 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 1.535601 \n",
+ " 1.474299 \n",
+ " 1.074152 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
],
- "source": [
- "%lprun -f fn fn(X_np, y_np)"
+ "text/plain": [
+ " original extracted extracted numba\n",
+ "0 1.482975 1.609354 1.086486\n",
+ "1 1.498656 1.504704 1.145331\n",
+ "2 1.500998 1.557253 1.090356\n",
+ "3 1.519732 1.548800 1.122623\n",
+ "4 1.500420 1.501195 1.113089\n",
+ "5 1.587211 1.522518 1.176842\n",
+ "6 1.499479 1.526887 1.095296\n",
+ "7 1.639910 1.500859 1.086477\n",
+ "8 1.525145 1.559202 1.103662\n",
+ "9 1.535601 1.474299 1.074152"
]
- },
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import timeit\n",
+ "\n",
+ "import pandas as pd\n",
+ "\n",
+ "stmts = {\n",
+ " \"original\": \"run_lda(X_np, y_np)\",\n",
+ " \"extracted\": \"fn(X_np, y_np)\",\n",
+ " \"extracted numba\": \"fn_numba(X_np, y_np)\",\n",
+ "}\n",
+ "df = pd.DataFrame.from_dict({\n",
+ " name: timeit.repeat(stmt, globals=globals(), number=1, repeat=10) for name, stmt in stmts.items()\n",
+ "})\n",
+ "\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "9488c513",
+ "metadata": {},
+ "outputs": [
{
- "cell_type": "markdown",
- "id": "7bf27fb6",
- "metadata": {},
- "source": [
- "We see that most of the time is spent in the SVD funciton, which [wouldn't be improved much by numba](https://github.com/numba/numba/issues/2423)\n",
- "since it is will call out to LAPACK, just like NumPy. The only savings would come from the other parts of the progarm,\n",
- "which can be inlined into\n",
- "\n",
- "## Conclusion\n",
- "\n",
- "To recap, in this tutorial we:\n",
- "\n",
- "1. Tried using a normal scikit-learn LDA function on some test data.\n",
- "2. Built up an abstract array and called it with that instead\n",
- "3. Optimized it and translated it to work with Numba\n",
- "4. Compiled it to a standalone Python funciton, which was optimized with Numba\n",
- "5. Verified that this improved our performance with this test data.\n",
- "\n",
- "The implementation of the Array API provided here is experimental, and not complete, but at least serves to show it is\n",
- "possible to build an API like that with `egglog`.\n"
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHqCAYAAADLbQ06AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAs/0lEQVR4nO3de3TU5Z3H8c8vgQzkNiEICZeBKBBEKoEN4oW2EFqMWjmiZ0VB1iDUiqDUpVDN1gpYK6utAioIu1WR6Gq9ge5WxQuEmxblEsSIQGJoAEMQhAwBDZA8+weHqYEkJDCXZzLv1zlzDr/bzDeZYT55nt/z/H6OMcYIAABYKSrUBQAAgPoR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgsYgLamOMvF6vuM4LACAcRFxQHzp0SG63W4cOHQp1KQAAnFHEBTUAAOGEoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGCxFqEuAKG3tHCP5i0v0rbySqWnxGtCVndl904NdVkAAEmOMcaEuohg8nq9crvdqqioUGJiYqjLCbmlhXt0R976WuscR5o/OpOwBgAL0PUd4eYtLzptnTHSvPziEFQDADgVQR3htpVX1rl+e/mhIFcCAKgLQR3h0lPi61zfIyUhyJUAAOpCUEe4CVnd5Ti11zmONHFwt9AUBACohaCOcNm9UzV/dKYyPEmKjYlWhidJC0Zn6koGkgGAFRj1DQCAxWhRAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABZrEeoCAISXpYV7NG95kbaVVyo9JV4Tsrorm9uiAgHDbS4BNNrSwj26I299rXWOI80fnUlYAwFC1zeARpu3vOi0dcZI8/KLQ1ANEBkIagCNtq28ss7128sPBbkSIHIQ1AAaLT0lvs71PVISglwJEDlCGtQrV67UsGHD1LFjRzmOoyVLlpzxmKqqKv3ud79T165d5XK5lJaWpmeffTbwxQLQhKzucpza6xxHmji4W2gKAiJASEd9Hz58WBkZGRo7dqxuuOGGRh0zYsQIlZeX65lnnlH37t1VVlammpqaAFcKQJKye6dq/uhMzcsv1vbyQ+qRkqCJg7vpSgaSAQFjzahvx3G0ePFiDR8+vN593n33Xd1888366quvlJycfFavw6hvAEA4Catz1G+99Zb69++vRx99VJ06dVJ6erqmTJmi7777LtSlAQAQEGF1wZOvvvpKq1evVqtWrbR48WLt27dPEyZM0P79+/Xcc8/VeUxVVZWqqqp8y16vN1jlAgBwzsKqRV1TUyPHcfTiiy9qwIABuuaaa/T444/r+eefr7dVPXPmTLndbt/D4/EEuWoAAM5eWAV1hw4d1KlTJ7ndbt+6Xr16yRijXbt21XlMbm6uKioqfI+dO3cGq1wAAM5ZWAX1wIED9fXXX6uy8p8XXdi2bZuioqLUuXPnOo9xuVxKTEys9QAAIFyENKgrKytVUFCggoICSVJJSYkKCgpUWloq6URr+NZbb/XtP2rUKLVt21a33XabvvjiC61cuVJTp07V2LFj1bp161D8CAAABFRIg3rdunXq16+f+vXrJ0maPHmy+vXrpwceeECSVFZW5gttSYqPj9f777+vgwcPqn///rrllls0bNgwPfHEEyGpHwCAQLNmHnWwMI8aABBOwmp6FgKD+wsDgL1oUUc47i8MAHYLq1Hf8D/uLwwAdiOoIxz3FwYAuxHUEY77CwOA3QjqCMf9hQHAbgR1hDt5f+EMT5JiY6KV4UnSgtGZ3F8YACzBqG8AACxGixoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGItQl0AgPC1tHCP5i0v0rbySqWnxGtCVndlc0MXwK+4KQeABtUXxksL9+iOvPW19nUcaf7oTMIa8CO6vgHU62QYb9pVoe+OVWvTrgqNf2G9L7xPZYw0L784BJUCzRdBDaBeDYXxtvLKOo/ZXn4o0GUBEYWgBlCvhsI4PSW+zm09UhICWRIQcQhqAPVqKIwnZHWX49Re7zjSxMHdglAZEDkIagD1aiiMs3unav7oTGV4khQbE60MT5IWjM7UlQwkA/yKUd8AGrS0cI/m5Rdre/kh9UhJ0BUXtNVHxfuYkgUECUENoNGYkgUEH13fABqNKVlA8BHUABqNKVlA8BHUABqNKVlA8BHUABqNKVlA8BHUABqNKVlA8DHqGwAAi9GiBgDAYtyPGtxTGAAsRtd3hOMCFgBgN7q+IxwXsAAAuxHUEY4LWACA3QjqCMcFLADAbgR1hOMCFgBgNwaT4bTbGE4c3I0LWEQ4ZgIA9iCoUS++rCMTMwEAu9D1jTqd/LLetKtC3x2r1qZdFRr/wnotLdwT6tIQYMwEAOzCBU9Qp4a+rGlVNW9nmglATwsQXLSoUSembUWuhmYC0NMCBB9BDS0t3KPrnlqtXr9/V9c9tVpLC/cwbSuCNTQTgG5xIPgI6ghXXwvpim7nMW0rQjV0K0t6WoDg4xx1hKuvhfTRV/s1f3Qm07YiVHbv1DrPO6enxGvTrorT1tPTAgQOQR3hGmoh1fdljcg1Iau7xr+wXj+c1ElPCxBYdH1HOM5Foyka6hYHEBi0qCMcLSQ0FT0tQHDRoo5wtJAAwG5cQhQAAIvRogYAwGIENQAAFmMwGQC/4BrgQGBwjhrAOePWmEDghLTre+XKlRo2bJg6duwox3G0ZMmSBvfPz8+X4zinPfbs4YYAQChxDXAgcELa9X348GFlZGRo7NixuuGGGxp93NatW2u1htu3bx+I8sJOQ12PdEuisc70WalrO9cABwLHmq5vx3G0ePFiDR8+vN598vPzlZWVpQMHDigpKemsXqe5dn031PUoqcFuSQIeJ52pC7u+7V2TY7Vj/5HTni/Dk6Q3Jw4MaM1AcxeWg8n69u2rqqoq/ehHP9L06dM1cGD9XwRVVVWqqqryLXu93mCUGHQNdj3W8bfYD7slf/jFe/LuWXUF/A+3EdbNU0Ofo+zeqfVul04ENle4A/wvrKZndejQQfPnz9frr7+u119/XR6PR4MHD9aGDRvqPWbmzJlyu92+h8fjCWLFwdNQ12ND2xr6Yua8Y+Q5Uxd2fdv3HqriCndAgIRVi7pnz57q2bOnb/mKK65QcXGxZs2apby8vDqPyc3N1eTJk33LXq+3WYZ1g7cfNKbebdv21H0OcXv5oboa4r5taJ7OdBvLhrZzDXAgMMKqRV2XAQMGqKjo9JbfSS6XS4mJibUezdGErO5ynNrrTnY9NrStobtncWetyNPQZ6Ux2wH4X9gHdUFBgTp06BDqMkKuoZtrNLTtbAMezdOZbtLCTVyA4AvpqO/Kykpfa7hfv356/PHHlZWVpeTkZHXp0kW5ubnavXu3Fi1aJEmaPXu2zj//fPXu3Vvff/+9/vKXv+jJJ5/Ue++9p5/97GeNes3mOur7XCwt3KN5+cXaXn5IPVISNHFwN98Xb0PbAACBF9Jz1OvWrVNWVpZv+eS55JycHC1cuFBlZWUqLS31bT969Kh+85vfaPfu3YqNjVWfPn30wQcf1HoONF1D5xY57wgAoWXNPOpgoUUNAAgnYX+OGgCA5oygBgDAYmE1jxqBwWVCAcBenKOOcNyeEADsRtd3hOMyoQBgN4I6wnF7QgCwG0Ed4bhMKADYjaCOcFwmFADsxmAycJlQNAmzBIDgIqgBNBqzBIDgo+sbQKMxSwAIPoIaQKMxSwAIPoIaQKMxSwAIPoIaQKMxSwAIPoIaQKNl907V/NGZyvAkKTYmWhmeJC0YncksASCAGPUNAIDFaFEDAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYLGQBvXKlSs1bNgwdezYUY7jaMmSJY0+ds2aNWrRooX69u0bsPoAAAi1kAb14cOHlZGRoblz5zbpuIMHD+rWW2/Vz372swBVBgCAHVqE8sWvvvpqXX311U0+bvz48Ro1apSio6Ob1AoHACDchN056ueee05fffWVpk2bFupSAAAIuJC2qJtq+/btuu+++7Rq1Sq1aNG40quqqlRVVeVb9nq9gSoPAAC/C5sWdXV1tUaNGqUZM2YoPT290cfNnDlTbrfb9/B4PAGsEgAA/3KMMSbURUiS4zhavHixhg8fXuf2gwcPqk2bNoqOjvatq6mpkTFG0dHReu+99zRkyJDTjqurRe3xeFRRUaHExES//xwAAPhT2HR9JyYmavPmzbXWzZs3T8uWLdNrr72m888/v87jXC6XXC5XMEoEAMDvQhrUlZWVKioq8i2XlJSooKBAycnJ6tKli3Jzc7V7924tWrRIUVFR+tGPflTr+Pbt26tVq1anrQcAoLkIaVCvW7dOWVlZvuXJkydLknJycrRw4UKVlZWptLQ0VOUBABBy1pyjDhav1yu32805agBAWAibUd8AAEQighoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLnVVQFxcX6/7779fIkSO1d+9eSdI777yjwsJCvxYHAECka3JQr1ixQhdffLHWrl2rN954Q5WVlZKkTZs2adq0aX4vEACASNbkoL7vvvv00EMP6f3331dMTIxv/ZAhQ/T3v//dr8UBABDpmhzUmzdv1vXXX3/a+vbt22vfvn1+KQoAAJzQ5KBOSkpSWVnZaes3btyoTp06+aUoAABwQpOD+uabb9a9996rPXv2yHEc1dTUaM2aNZoyZYpuvfXWQNQIAEDEcowxpikHHD16VBMnTtTChQtVXV2tFi1aqLq6WqNGjdLChQsVHR0dqFr9wuv1yu12q6KiQomJiaEuBwCABjU5qE8qLS3V559/rsrKSvXr1089evTwd20BQVADAMLJWQd1uCKoAQDhpEVTDzDG6LXXXtPy5cu1d+9e1dTU1Nr+xhtv+K04AAAiXZOD+p577tGCBQuUlZWllJQUOY4TiLoAAIDOous7OTlZL7zwgq655ppA1RRQdH0DAMJJk6dnud1uXXDBBYGoBQAAnKLJQT19+nTNmDFD3333XSDqAQAAP9Dkc9QjRozQSy+9pPbt2ystLU0tW7astX3Dhg1+Kw4AgEjX5KDOycnR+vXrNXr0aAaTAQAQYE0eTBYXF6elS5fqxz/+caBqCigGkwEAwkmTz1F7PB4CDgCAIGlyUD/22GP67W9/qx07dgSgHAAA8ENN7vpu06aNjhw5ouPHjys2Nva0wWTffvutXwv0N7q+AQDhpMmDyWbPnh2AMgAAQF24KQcAABZrVIva6/X6Qs3r9Ta4L+EHAID/NCqo27Rpo7KyMrVv315JSUl1zp02xshxHFVXV/u9SAAAIlWjgnrZsmVKTk6WJD333HPyeDyKjo6utU9NTY1KS0v9XyEAABGsyeeoo6Ojfa3rH9q/f7/at29vfYuac9QAgHDS5HnUJ7u4T1VZWalWrVr5pSgAAHBCo6dnTZ48WZLkOI5+//vfKzY21returpaa9euVd++ff1eIAAAkazRQb1x40ZJJ1rUmzdvVkxMjG9bTEyMMjIyNGXKFP9XCABABGvyOerbbrtNc+bMCdvzu5yjBgCEEy54AgCAxZo8mAwAAAQPQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsFhIg3rlypUaNmyYOnbsKMdxtGTJkgb3X716tQYOHKi2bduqdevWuvDCCzVr1qzgFAsAQAi0COWLHz58WBkZGRo7dqxuuOGGM+4fFxenu+66S3369FFcXJxWr16tO+64Q3FxcfrVr34VhIoBAAguxxhjQl2EJDmOo8WLF2v48OFNOu6GG25QXFyc8vLyGrW/1+uV2+1WRUWFEhMTz6JSAACCJ6zPUW/cuFEfffSRBg0aVO8+VVVV8nq9tR4AAISLsAzqzp07y+VyqX///po4caJ++ctf1rvvzJkz5Xa7fQ+PxxPESgEAODdhGdSrVq3SunXrNH/+fM2ePVsvvfRSvfvm5uaqoqLC99i5c2cQKwUA4NyEdDDZ2Tr//PMlSRdffLHKy8s1ffp0jRw5ss59XS6XXC5XMMsDAMBvwrJF/UM1NTWqqqoKdRkAAARESFvUlZWVKioq8i2XlJSooKBAycnJ6tKli3Jzc7V7924tWrRIkjR37lx16dJFF154oaQT87D//Oc/a9KkSSGpHwCAQAtpUK9bt05ZWVm+5cmTJ0uScnJytHDhQpWVlam0tNS3vaamRrm5uSopKVGLFi3UrVs3PfLII7rjjjuCXjsAAMFgzTzqYGEeNQAgnIT9OWoAAJozghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLhTSoV65cqWHDhqljx45yHEdLlixpcP833nhDQ4cOVbt27ZSYmKjLL79cS5cuDU6xAACEQEiD+vDhw8rIyNDcuXMbtf/KlSs1dOhQvf3221q/fr2ysrI0bNgwbdy4McCVAgAQGo4xxoS6CElyHEeLFy/W8OHDm3Rc7969ddNNN+mBBx5o1P5er1dut1sVFRVKTEw8i0oBAAieFqEu4FzU1NTo0KFDSk5OrnefqqoqVVVV+Za9Xm8wSgMAwC/CejDZn//8Z1VWVmrEiBH17jNz5ky53W7fw+PxBLFCAADOTdgG9f/8z/9oxowZeuWVV9S+fft698vNzVVFRYXvsXPnziBWCQDAuQnLru+XX35Zv/zlL/Xqq6/q5z//eYP7ulwuuVyuIFUGAIB/hV2L+qWXXtJtt92ml156Sb/4xS9CXQ4AAAEV0hZ1ZWWlioqKfMslJSUqKChQcnKyunTpotzcXO3evVuLFi2SdKK7OycnR3PmzNGll16qPXv2SJJat24tt9sdkp8BAIBACun0rPz8fGVlZZ22PicnRwsXLtSYMWO0Y8cO5efnS5IGDx6sFStW1Lt/YzA9CwAQTqyZRx0sBDUAIJyE3TlqAAAiCUENAIDFCGoAACxGUAMAYDGCGgAAixHUAABYLCwvIQoAsN/Swj2at7xI28orlZ4SrwlZ3ZXdOzXUZYUd5lEDAPxuaeEe3ZG3vtY6x5Hmj84krJuIrm8AgN/NW1502jpjpHn5xSGoJrwR1AAAv9tWXlnn+u3lh4JcSfgjqAEAfpeeEl/n+h4pCUGuJPwR1AAAv5uQ1V2OU3ud40gTB3cLTUFhjKAGAPhddu9UzR+dqQxPkmJjopXhSdKC0Zm6koFkTcaobwAALEaLGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYgQ1AAAWI6gBALAYQQ0AgMVahLoAAEDztLRwj+YtL9K28kqlp8RrQlZ3ZXM/6ibjftQAAL9bWrhHd+Str7XOcaT5ozMJ6yai6xsA4Hfzlhedts4YaV5+cQiqCW8ENQDA77aVV9a5fnv5oSBXEv4IagCA36WnxNe5vkdKQpArCX8ENQDA7yZkdZfj1F7nONLEwd1CU1AYI6gBAH6X3TtV80dnKsOTpNiYaGV4krRgdKauZCBZkzHqGwAAi9GiBgDAYgQ1AAAWI6gBALAYQQ0AgMUIagAALEZQAwBgMYIaAACLcZtLAEDAcKvLc8cFTwAAAcGtLv2Drm8AQEBwq0v/IKgBAAHBrS79g6AGAAQEt7r0D4IaABAQ3OrSPwhqAEBAcKtL/2B6FgDAr5iS5V9MzwIA+A1TsvyPrm8AgN8wJcv/CGoAgN8wJcv/CGoAgN8wJcv/CGoAgN8wJcv/GEwGAPCrpYV7NC+/WNvLD6l9gkuSVO6tYgT4WQppi3rlypUaNmyYOnbsKMdxtGTJkgb3Lysr06hRo5Senq6oqCjdc889QakTANB42b1T9ebEgZp1U1/t2H9EO/Yf0XfHqrVpV4XGv7BeSwv3hLrEsBLSoD58+LAyMjI0d+7cRu1fVVWldu3a6f7771dGRkaAqwMAnAtGgPtHSC94cvXVV+vqq69u9P5paWmaM2eOJOnZZ58NVFkAAD9gBLh/MJgMABAQjAD3j2Yf1FVVVfJ6vbUeAIDAYwS4fzT7a33PnDlTM2bMCHUZABARTr3O9/ifdtNHX+3X9vJD6pGSoImDu3FTjiZq9kGdm5uryZMn+5a9Xq88Hk8IKwKA5unU63xv2lWhz3ZXcJ3vc9Tsg9rlcsnlcoW6DABo9hoa5U1Qn72QBnVlZaWKiv75xpaUlKigoEDJycnq0qWLcnNztXv3bi1atMi3T0FBge/Yb775RgUFBYqJidFFF10U7PIBAD/QlFHe3Aqz8UJ6ZbL8/HxlZWWdtj4nJ0cLFy7UmDFjtGPHDuXn5/u2OaeOTJDUtWtX7dixo1GvyZXJACAwrntqtTbtqjhtfYYnSW9OHOhb5laYTcMlRAEAfrG0cI/Gv7BeP0wVx5EWjM6sNYCssYGOE5r9OWoAQOA0NMr75HW+f/1yQa3ubS6E0jQENQDgrDQ0ylvSadvGv7Be80dnKj0lvs4WNRdCqVuzv+AJACAwGhrl3dA2LoTSNAQ1AOCsNNSF3dC27N6pmj86UxmeJMXGRCvDk3TaeWz8E13fAICz0mAXtjENdm9n905lhHcj0aIGAJyVhrqw6d72H6ZnAQDO2tLCPZqXX1zntbwb2obGI6gBALAY56gBAAHBZUL9gxY1AMDvuEyo/zCYDADgdw3No0bTENQAAL/jMqH+Q1ADAPwuPSW+zvVcJrTpCGoAgN8xj9p/CGoAgN9xmVD/YdQ3AAAWo0UNAIDFCGoAACxGUAMAYDGCGgAAixHUAABYjKAGAMBiBDUAABYjqAEAsBhBDQCAxQhqAAAsRlADAGAxghoAAIsR1AAAWIygBgDAYi1CXUCwnbyrp9frDXElAIBIl5CQIMdxGtwn4oL60KFDkiSPxxPiSgAAka6iokKJiYkN7uOYk03MCFFTU6Ovv/66UX/FRBKv1yuPx6OdO3ee8UMD8HlBY/FZaRgt6jpERUWpc+fOoS7DWomJifxnQqPxeUFj8Vk5ewwmAwDAYgQ1AAAWI6ghSXK5XJo2bZpcLleoS0EY4POCxuKzcu4ibjAZAADhhBY1AAAWI6gBALAYQd3MTZ8+XX379m3SMYMHD9Y999wT8jqAugTi84ngsvk9tPG7iqBu5qZMmaIPP/ywSce88cYb+sMf/hCgimCD/Px8OY6jgwcPBuX1bP5iDle8h5Ej4i54EimMMaqurlZ8fLzi4+ObdGxycnKAqkK4OXr0qGJiYkJdBs4B72H4o0UdRqqqqjRp0iS1b99erVq10o9//GN9+umnkv751/U777yjzMxMuVwurV69+rRunOPHj2vSpElKSkpS27Ztde+99yonJ0fDhw/37XPqX85paWl6+OGHNXbsWCUkJKhLly76r//6r1q13XvvvUpPT1dsbKwuuOAC/f73v9exY8cC+euIeDU1NZo5c6bOP/98tW7dWhkZGXrttddkjNHPf/5zZWdn+25C8+2336pz58564IEHtGPHDmVlZUmS2rRpI8dxNGbMGEkn3vu77rpL99xzj8477zxlZ2dLkh5//HFdfPHFiouLk8fj0YQJE1RZWVmrnjVr1mjw4MGKjY1VmzZtlJ2drQMHDmjMmDFasWKF5syZI8dx5DiOduzYIUn6/PPPdfXVVys+Pl4pKSn6t3/7N+3bt8/3nIcPH9att96q+Ph4dejQQY899liAf6vBU9/7Jyni38OT31t5eXlKS0uT2+3WzTff7LtXg3Tie2n27Nm1juvbt6+mT5/uW3YcRwsWLNC1116r2NhY9erVSx9//LGKioo0ePBgxcXF6YorrlBxcfFpNSxYsEAej0exsbEaMWKEKioqfNs+/fRTDR06VOedd57cbrcGDRqkDRs2nPHnOmsGYWPSpEmmY8eO5u233zaFhYUmJyfHtGnTxuzfv98sX77cSDJ9+vQx7733nikqKjL79+8306ZNMxkZGb7neOihh0xycrJ54403zJYtW8z48eNNYmKiue6663z7DBo0yPz617/2LXft2tUkJyebuXPnmu3bt5uZM2eaqKgo8+WXX/r2+cMf/mDWrFljSkpKzFtvvWVSUlLMI4884tt+ah04dw899JC58MILzbvvvmuKi4vNc889Z1wul8nPzze7du0ybdq0MbNnzzbGGHPjjTeaAQMGmGPHjpnjx4+b119/3UgyW7duNWVlZebgwYPGmBPvfXx8vJk6dar58ssvfe/xrFmzzLJly0xJSYn58MMPTc+ePc2dd97pq2Xjxo3G5XKZO++80xQUFJjPP//cPPnkk+abb74xBw8eNJdffrm5/fbbTVlZmSkrKzPHjx83Bw4cMO3atTO5ublmy5YtZsOGDWbo0KEmKyvL97x33nmn6dKli/nggw/MZ599Zq699lqTkJBQ6/MZrhp6/4wxEf0eTps2zcTHx5sbbrjBbN682axcudKkpqaa//iP//Dt07VrVzNr1qxax2VkZJhp06b5liWZTp06mb/+9a9m69atZvjw4SYtLc0MGTLEvPvuu+aLL74wl112mbnqqqtqvXZcXJwZMmSI2bhxo1mxYoXp3r27GTVqlG+fDz/80OTl5ZktW7aYL774wowbN86kpKQYr9fbyHe/aQjqMFFZWWlatmxpXnzxRd+6o0ePmo4dO5pHH33UF9RLliypddypAZmSkmL+9Kc/+ZaPHz9uunTpcsagHj16tG+5pqbGtG/f3jz99NP11vunP/3JZGZm1lsHzs33339vYmNjzUcffVRr/bhx48zIkSONMca88sorplWrVua+++4zcXFxZtu2bb79Tn5eDhw4UOv4QYMGmX79+p3x9V999VXTtm1b3/LIkSPNwIED693/1M+UMSf+uLvyyitrrdu5c6cvfA4dOmRiYmLMK6+84tu+f/9+07p167AP6sa8f8ZE7ns4bdo0ExsbWyv4pk6dai699FLfcmOD+v777/ctf/zxx0aSeeaZZ3zrXnrpJdOqVatarx0dHW127drlW/fOO++YqKgoU1ZWVme91dXVJiEhwfzv//5vvT/TueAcdZgoLi7WsWPHNHDgQN+6li1basCAAdqyZYsuueQSSVL//v3rfY6KigqVl5drwIABvnXR0dHKzMxUTU1Ng6/fp08f378dx1Fqaqr27t3rW/fXv/5VTzzxhIqLi1VZWanjx49zAf4AKioq0pEjRzR06NBa648ePap+/fpJkm688UYtXrxY//mf/6mnn35aPXr0aNRzZ2Zmnrbugw8+0MyZM/Xll1/K6/Xq+PHj+v7773XkyBHFxsaqoKBAN954Y5N+hk2bNmn58uV1jqEoLi7Wd999p6NHj+rSSy/1rU9OTlbPnj2b9Do2asz7J0X2e5iWlqaEhATfcocOHWp95zTWD7+7UlJSJEkXX3xxrXXff/+9vF6v7zurS5cu6tSpk2+fyy+/XDU1Ndq6datSU1NVXl6u+++/X/n5+dq7d6+qq6t15MgRlZaWNrm+xiCom5m4uLiAPG/Lli1rLTuO4wv3jz/+WLfccotmzJih7Oxsud1uvfzyy83qfKJtTp5b/Nvf/lbrC0WS71KNR44c0fr16xUdHa3t27c3+rlP/Qzt2LFD1157re6880798Y9/VHJyslavXq1x48bp6NGjio2NVevWrc/qZxg2bJgeeeSR07Z16NBBRUVFTX7OcNGY90+K7Pewoe8c6cSdEM0pF9asa1zMD5/n5O0k61p3psbKD+Xk5Gj//v2aM2eOunbtKpfLpcsvv1xHjx5t9HM0BYPJwkS3bt0UExOjNWvW+NYdO3ZMn376qS666KJGPYfb7VZKSopvAJokVVdXn/MgiI8++khdu3bV7373O/Xv3189evTQP/7xj3N6TjTsoosuksvlUmlpqbp3717r4fF4JEm/+c1vFBUVpXfeeUdPPPGEli1b5jv+5Cjg6urqM77W+vXrVVNTo8cee0yXXXaZ0tPT9fXXX9fap0+fPg1OA4yJiTnttf7lX/5FhYWFSktLO+1niIuLU7du3dSyZUutXbvWd8yBAwe0bdu2M/+CLNeY90/iPWxIu3btVFZW5lv2er0qKSk55+eVpNLS0lq/n7///e+Kiory9QSsWbNGkyZN0jXXXKPevXvL5XLVGkDnbwR1mIiLi9Odd96pqVOn6t1339UXX3yh22+/XUeOHNG4ceMa/Tx33323Zs6cqTfffFNbt27Vr3/9ax04cOCMNy5vSI8ePVRaWqqXX35ZxcXFeuKJJ7R48eKzfj6cWUJCgqZMmaJ///d/1/PPP6/i4mJt2LBBTz75pJ5//nn97W9/07PPPqsXX3xRQ4cO1dSpU5WTk6MDBw5Ikrp27SrHcfR///d/+uabb04b/ftD3bt317Fjx/Tkk0/qq6++Ul5enubPn19rn9zcXH366aeaMGGCPvvsM3355Zd6+umnfV9eaWlpWrt2rXbs2KF9+/appqZGEydO1LfffquRI0fq008/VXFxsZYuXarbbrvNN7Vw3Lhxmjp1qpYtW6bPP/9cY8aMUVRU+H9tnen9k8R7eAZDhgxRXl6eVq1apc2bNysnJ0fR0dHn/LyS1KpVK+Xk5GjTpk1atWqVJk2apBEjRig1NVXSie+8vLw8bdmyRWvXrtUtt9xyVj0SjRaQM98IiO+++87cfffd5rzzzjMul8sMHDjQfPLJJ8aY+geWnDqI69ixY+auu+4yiYmJpk2bNubee+81N954o7n55pt9+9Q1mOxMgzamTp1q2rZta+Lj481NN91kZs2aZdxud7114NzV1NSY2bNnm549e5qWLVuadu3amezsbJOfn29SUlLMww8/7Nv36NGjJjMz04wYMcK37sEHHzSpqanGcRyTk5NjjKl7wJAxxjz++OOmQ4cOpnXr1iY7O9ssWrTotM9bfn6+ueKKK4zL5TJJSUkmOzvbt33r1q3msssuM61btzaSTElJiTHGmG3btpnrr7/eJCUlmdatW5sLL7zQ3HPPPaampsYYY8yhQ4fM6NGjTWxsrElJSTGPPvpovTWGm/revxUrVpi9e/dG9HtY1/fFrFmzTNeuXX3LFRUV5qabbjKJiYnG4/GYhQsX1jmYbPHixb7lkpISI8ls3LjRt+7U786Trz1v3jzTsWNH06pVK/Ov//qv5ttvv/Uds2HDBtO/f3/TqlUr06NHD/Pqq6/W+T3pL9w9K8LV1NSoV69eGjFiBFcjAwALMZgswvzjH//Qe++9p0GDBqmqqkpPPfWUSkpKNGrUqFCXBgCoQ/if7EGTREVFaeHChbrkkks0cOBAbd68WR988IF69eoV6tIAAHWg6xsAAIvRogYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAPNiDFGv/rVr5ScnCzHcVRQUBCSOnbs2BHS1weaE6ZnAc3IO++8o+uuu075+fm64IILdN5556lFi8Be12jMmDE6ePCglixZ4ltXXV2tb775JiivDzR3/A8CmpHi4mJ16NBBV1xxRUjriI6O9t3AAMC5oesbaCbGjBmju+++W6WlpXIcR2lpaUpLS9Ps2bNr7de3b19Nnz7dt+w4jv7yl7/o+uuvV2xsrHr06KG33nqr1jGFhYW69tprlZiYqISEBP3kJz9RcXGxpk+frueff15vvvmmHMeR4zjKz8+vs+t7xYoVGjBggFwulzp06KD77rtPx48f920fPHiwJk2apN/+9rdKTk5WampqrTqBSEVQA83EnDlz9OCDD6pz584qKyurdd/xM5kxY4ZGjBihzz77TNdcc41uueUWffvtt5Kk3bt366c//alcLpeWLVum9evXa+zYsTp+/LimTJmiESNG6KqrrlJZWZnKysrqbM3v3r1b11xzjS655BJt2rRJTz/9tJ555hk99NBDtfZ7/vnnFRcXp7Vr1+rRRx/Vgw8+qPfff//cfjFAmKPrG2gm3G63EhISzqrbecyYMRo5cqQk6eGHH9YTTzyhTz75RFdddZXmzp0rt9utl19+WS1btpQkpaen+45t3bq1qqqqGnzNefPmyePx6KmnnpLjOLrwwgv19ddf695779UDDzzguz9xnz59NG3aNEkn7vn71FNP6cMPP9TQoUOb9PMAzQktagDq06eP799xcXFKTEzU3r17JUkFBQX6yU9+4gvps7FlyxZdfvnlchzHt27gwIGqrKzUrl276qxDkjp06OCrA4hUBDXQjEVFRenUiR3Hjh07bb9TQ9hxHNXU1Eg60WIOlobqACIVQQ00Y+3atVNZWZlv2ev1qqSkpEnP0adPH61atarOgJekmJgYVVdXN/gcvXr10scff1zrj4Y1a9YoISFBnTt3blI9QKQhqIFmbMiQIcrLy9OqVau0efNm5eTkKDo6uknPcdddd8nr9ermm2/WunXrtH37duXl5Wnr1q2SpLS0NH322WfaunWr9u3bV2egT5gwQTt37tTdd9+tL7/8Um+++aamTZumyZMn+85PA6gb/0OAZiw3N1eDBg3Stddeq1/84hcaPny4unXr1qTnaNu2rZYtW6bKykoNGjRImZmZ+u///m9fN/Xtt9+unj17qn///mrXrp3WrFlz2nN06tRJb7/9tj755BNlZGRo/PjxGjdunO6//36//JxAc8aVyQAAsBgtagAALEZQAwBgMYIaAACLEdQAAFiMoAYAwGIENQAAFiOoAQCwGEENAIDFCGoAACxGUAMAYDGCGgAAixHUAABY7P8B0daK/soSNGUAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
]
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
- ],
- "metadata": {
- "file_format": "mystnb",
- "kernelspec": {
- "display_name": "egglog-python",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.10.12"
- },
- "mystnb": {
- "execution_mode": "off"
+ ],
+ "source": [
+ "import seaborn as sns\n",
+ "\n",
+ "df_melt = pd.melt(df, var_name=\"function\", value_name=\"time\")\n",
+ "_ = sns.catplot(data=df_melt, x=\"function\", y=\"time\", kind=\"swarm\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "83eab582",
+ "metadata": {},
+ "source": [
+ "We see that the numba version is in fact faster, and the other two are about the same. It isn't significantly faster through,\n",
+ "so we might want to run a profiler on the original function to see where most of the time is spent:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "06d7777a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext line_profiler"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "f88942d6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Timer unit: 1e-09 s\n",
+ "\n",
+ "Total time: 1.41607 s\n",
+ "File: /var/folders/xn/05ktz3056kqd9n8frgd6236h0000gn/T/egglog-9e61d62c-d17d-495b-b8db-f1eb3b38dcbb.py\n",
+ "Function: __fn at line 1\n",
+ "\n",
+ "Line # Hits Time Per Hit % Time Line Contents\n",
+ "==============================================================\n",
+ " 1 def __fn(X, y):\n",
+ " 2 1 13000.0 13000.0 0.0 assert X.dtype == np.dtype(np.float64)\n",
+ " 3 1 2000.0 2000.0 0.0 assert X.shape == (1000000, 20,)\n",
+ " 4 1 23813000.0 2e+07 1.7 assert np.all(np.isfinite(X))\n",
+ " 5 1 11000.0 11000.0 0.0 assert y.dtype == np.dtype(np.int64)\n",
+ " 6 1 14000.0 14000.0 0.0 assert y.shape == (1000000,)\n",
+ " 7 1 23226000.0 2e+07 1.6 assert set(np.unique(y)) == set((0, 1,))\n",
+ " 8 1 542000.0 542000.0 0.0 _0 = y == np.array(0)\n",
+ " 9 1 488000.0 488000.0 0.0 _1 = np.sum(_0)\n",
+ " 10 1 493000.0 493000.0 0.0 _2 = y == np.array(1)\n",
+ " 11 1 454000.0 454000.0 0.0 _3 = np.sum(_2)\n",
+ " 12 1 14000.0 14000.0 0.0 _4 = np.array((_1, _3,)).astype(np.dtype(np.float64))\n",
+ " 13 1 9000.0 9000.0 0.0 _5 = _4 / np.array(1000000.0)\n",
+ " 14 1 4000.0 4000.0 0.0 _6 = np.zeros((2, 20,), dtype=np.dtype(np.float64))\n",
+ " 15 1 98376000.0 1e+08 6.9 _7 = np.sum(X[_0], axis=0)\n",
+ " 16 1 38374000.0 4e+07 2.7 _8 = _7 / np.array(X[_0].shape[0])\n",
+ " 17 1 6000.0 6000.0 0.0 _6[0, :] = _8\n",
+ " 18 1 45697000.0 5e+07 3.2 _9 = np.sum(X[_2], axis=0)\n",
+ " 19 1 35522000.0 4e+07 2.5 _10 = _9 / np.array(X[_2].shape[0])\n",
+ " 20 1 6000.0 6000.0 0.0 _6[1, :] = _10\n",
+ " 21 1 13000.0 13000.0 0.0 _11 = _5 @ _6\n",
+ " 22 1 33768000.0 3e+07 2.4 _12 = X - _11\n",
+ " 23 1 18000.0 18000.0 0.0 _13 = np.sqrt(np.array((1.0 / 999998)))\n",
+ " 24 1 50544000.0 5e+07 3.6 _14 = X[_0] - _6[0, :]\n",
+ " 25 1 55966000.0 6e+07 4.0 _15 = X[_2] - _6[1, :]\n",
+ " 26 1 26138000.0 3e+07 1.8 _16 = np.concatenate((_14, _15,), axis=0)\n",
+ " 27 1 23667000.0 2e+07 1.7 _17 = np.sum(_16, axis=0)\n",
+ " 28 1 26000.0 26000.0 0.0 _18 = _17 / np.array(_16.shape[0])\n",
+ " 29 1 45000.0 45000.0 0.0 _19 = np.expand_dims(_18, 0)\n",
+ " 30 1 33604000.0 3e+07 2.4 _20 = _16 - _19\n",
+ " 31 1 24774000.0 2e+07 1.7 _21 = np.square(_20)\n",
+ " 32 1 21671000.0 2e+07 1.5 _22 = np.sum(_21, axis=0)\n",
+ " 33 1 31000.0 31000.0 0.0 _23 = _22 / np.array(_21.shape[0])\n",
+ " 34 1 4000.0 4000.0 0.0 _24 = np.sqrt(_23)\n",
+ " 35 1 7000.0 7000.0 0.0 _25 = _24 == np.array(0)\n",
+ " 36 1 3000.0 3000.0 0.0 _24[_25] = np.array(1.0)\n",
+ " 37 1 32910000.0 3e+07 2.3 _26 = _16 / _24\n",
+ " 38 1 24105000.0 2e+07 1.7 _27 = _13 * _26\n",
+ " 39 1 814200000.0 8e+08 57.5 _28 = np.linalg.svd(_27, full_matrices=False)\n",
+ " 40 1 23000.0 23000.0 0.0 _29 = _28[1] > np.array(0.0001)\n",
+ " 41 1 10000.0 10000.0 0.0 _30 = _29.astype(np.dtype(np.int32))\n",
+ " 42 1 63000.0 63000.0 0.0 _31 = np.sum(_30)\n",
+ " 43 1 14000.0 14000.0 0.0 _32 = _28[2][:_31, :] / _24\n",
+ " 44 1 7000.0 7000.0 0.0 _33 = _32.T / _28[1][:_31]\n",
+ " 45 1 9000.0 9000.0 0.0 _34 = np.array(1000000) * _5\n",
+ " 46 1 4000.0 4000.0 0.0 _35 = _34 * np.array(1.0)\n",
+ " 47 1 3000.0 3000.0 0.0 _36 = np.sqrt(_35)\n",
+ " 48 1 5000.0 5000.0 0.0 _37 = _6 - _11\n",
+ " 49 1 4000.0 4000.0 0.0 _38 = _36 * _37.T\n",
+ " 50 1 11000.0 11000.0 0.0 _39 = _38.T @ _33\n",
+ " 51 1 70000.0 70000.0 0.0 _40 = np.linalg.svd(_39, full_matrices=False)\n",
+ " 52 1 6000.0 6000.0 0.0 _41 = np.array(0.0001) * _40[1][0]\n",
+ " 53 1 3000.0 3000.0 0.0 _42 = _40[1] > _41\n",
+ " 54 1 4000.0 4000.0 0.0 _43 = _42.astype(np.dtype(np.int32))\n",
+ " 55 1 18000.0 18000.0 0.0 _44 = np.sum(_43)\n",
+ " 56 1 8000.0 8000.0 0.0 _45 = _33 @ _40[2].T[:, :_44]\n",
+ " 57 1 7242000.0 7e+06 0.5 _46 = _12 @ _45\n",
+ " 58 1 7000.0 7000.0 0.0 return _46[:, :1]"
+ ]
}
+ ],
+ "source": [
+ "%lprun -f fn fn(X_np, y_np)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7bf27fb6",
+ "metadata": {},
+ "source": [
+ "We see that most of the time is spent in the SVD funciton, which [wouldn't be improved much by numba](https://github.com/numba/numba/issues/2423)\n",
+ "since it is will call out to LAPACK, just like NumPy. The only savings would come from the other parts of the progarm,\n",
+ "which can be inlined into\n",
+ "\n",
+ "## Conclusion\n",
+ "\n",
+ "To recap, in this tutorial we:\n",
+ "\n",
+ "1. Tried using a normal scikit-learn LDA function on some test data.\n",
+ "2. Built up an abstract array and called it with that instead\n",
+ "3. Optimized it and translated it to work with Numba\n",
+ "4. Compiled it to a standalone Python funciton, which was optimized with Numba\n",
+ "5. Verified that this improved our performance with this test data.\n",
+ "\n",
+ "The implementation of the Array API provided here is experimental, and not complete, but at least serves to show it is\n",
+ "possible to build an API like that with `egglog`.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "file_format": "mystnb",
+ "kernelspec": {
+ "display_name": "egglog-python",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
},
- "nbformat": 4,
- "nbformat_minor": 5
+ "mystnb": {
+ "execution_mode": "off"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
}
diff --git a/pyproject.toml b/pyproject.toml
index 696b834c..0cf7db30 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -129,6 +129,20 @@ ignore = [
"T201",
# Allow constants
"PLR2004",
+ # Allow missing type annotations
+ "ANN001",
+ # allow missing return types
+ "ANN201",
+ # Allow uppercase args
+ "N803",
+ # allow generic df name
+ "PD901",
+ # Allow future anywhere in file
+ "F404",
+ # allow imports anywhere in cell
+ "E402",
+ # Alllow open()
+ "PTH123",
# Inconsistant formatting
"D203",
diff --git a/python/egglog/conversion.py b/python/egglog/conversion.py
index 0722f3ae..1abb636c 100644
--- a/python/egglog/conversion.py
+++ b/python/egglog/conversion.py
@@ -195,6 +195,6 @@ def _get_tp(x: object) -> TypeName | type:
return TypeName(x.__egg_typed_expr__.tp.name)
tp = type(x)
# If this value has a custom metaclass, let's use that as our index instead of the type
- if type(tp) != type:
+ if type(tp) is not type:
return type(tp)
return tp
diff --git a/python/egglog/declarations.py b/python/egglog/declarations.py
index 79544b35..e060f9a1 100644
--- a/python/egglog/declarations.py
+++ b/python/egglog/declarations.py
@@ -622,9 +622,8 @@ def _inner(typed_expr: TypedExprDecl) -> TypedExprDecl:
res = replacements[typed_expr]
else:
match typed_expr.expr:
- case (
+ case CallDecl(callable, args, bound_tp_params) | PartialCallDecl(
CallDecl(callable, args, bound_tp_params)
- | PartialCallDecl(CallDecl(callable, args, bound_tp_params))
):
new_args = tuple(_inner(a) for a in args)
call_decl = CallDecl(callable, new_args, bound_tp_params)
diff --git a/python/egglog/egraph.py b/python/egglog/egraph.py
index 26f7cb39..097835c8 100644
--- a/python/egglog/egraph.py
+++ b/python/egglog/egraph.py
@@ -486,7 +486,7 @@ def __instancecheck__(cls, instance: object) -> bool:
return isinstance(instance, RuntimeExpr)
-def _generate_class_decls( # noqa: C901
+def _generate_class_decls( # noqa: C901,PLR0912
namespace: dict[str, Any],
frame: FrameType,
builtin: bool,
@@ -1208,7 +1208,7 @@ def __enter__(self) -> Self:
self.push()
return self
- def __exit__(self, exc_type, exc, exc_tb) -> None: # noqa: ANN001
+ def __exit__(self, exc_type, exc, exc_tb) -> None:
CURRENT_EGRAPH.reset(self._token_stack.pop())
self.pop()
diff --git a/python/egglog/egraph_state.py b/python/egglog/egraph_state.py
index 277670b0..956ee0f9 100644
--- a/python/egglog/egraph_state.py
+++ b/python/egglog/egraph_state.py
@@ -330,7 +330,7 @@ def _expr_to_egg(self, expr_decl: VarDecl) -> bindings.Var: ...
@overload
def _expr_to_egg(self, expr_decl: ExprDecl) -> bindings._Expr: ...
- def _expr_to_egg(self, expr_decl: ExprDecl) -> bindings._Expr:
+ def _expr_to_egg(self, expr_decl: ExprDecl) -> bindings._Expr: # noqa: PLR0912,C901
"""
Convert an ExprDecl to an egg expression.
"""
diff --git a/python/egglog/examples/higher_order_functions.py b/python/egglog/examples/higher_order_functions.py
index c02a1a3b..4077af6b 100644
--- a/python/egglog/examples/higher_order_functions.py
+++ b/python/egglog/examples/higher_order_functions.py
@@ -26,7 +26,7 @@ def map(self, f: Callable[[Math], Math]) -> MathList: ...
@ruleset
-def math_ruleset(i: i64, j: i64, xs: MathList, x: Math, f: Callable[[Math], Math]): # noqa: ANN201
+def math_ruleset(i: i64, j: i64, xs: MathList, x: Math, f: Callable[[Math], Math]):
yield rewrite(Math(i) + Math(j)).to(Math(i + j))
yield rewrite(xs.append(x).map(f)).to(xs.map(f).append(f(x)))
yield rewrite(MathList().map(f)).to(MathList())
diff --git a/python/egglog/exp/array_api_loopnest.py b/python/egglog/exp/array_api_loopnest.py
index 96e69364..a1222eb5 100644
--- a/python/egglog/exp/array_api_loopnest.py
+++ b/python/egglog/exp/array_api_loopnest.py
@@ -28,7 +28,7 @@ def to_tuple(self) -> TupleInt: ...
@array_api_ruleset.register
-def shape_api_ruleset(dims: TupleInt, axis: TupleInt): # noqa: ANN201
+def shape_api_ruleset(dims: TupleInt, axis: TupleInt):
s = ShapeAPI(dims)
yield rewrite(s.deselect(axis)).to(
ShapeAPI(TupleInt.range(dims.length()).filter(lambda i: ~axis.contains(i)).map(lambda i: dims[i]))
@@ -108,7 +108,7 @@ def _loopnest_api_ruleset(
@function(ruleset=array_api_ruleset, unextractable=True)
-def linalg_norm(X: NDArray, axis: TupleIntLike) -> NDArray: # noqa: N803
+def linalg_norm(X: NDArray, axis: TupleIntLike) -> NDArray:
# peel off the outer shape for result array
outshape = ShapeAPI(X.shape).deselect(axis).to_tuple()
# get only the inner shape for reduction
diff --git a/python/egglog/ipython_magic.py b/python/egglog/ipython_magic.py
index b4c0655a..49111806 100644
--- a/python/egglog/ipython_magic.py
+++ b/python/egglog/ipython_magic.py
@@ -14,7 +14,7 @@
@needs_local_scope
@register_cell_magic
- def egglog(line, cell, local_ns): # noqa: ANN001, ANN201
+ def egglog(line, cell, local_ns):
"""
Run an egglog program.
diff --git a/python/egglog/pretty.py b/python/egglog/pretty.py
index 11f80185..6b6db444 100644
--- a/python/egglog/pretty.py
+++ b/python/egglog/pretty.py
@@ -147,7 +147,7 @@ def pretty(self) -> PrettyContext:
"""
return PrettyContext(self.decls, self.parents)
- def __call__(self, decl: AllDecls, toplevel: bool = False) -> None: # noqa: C901
+ def __call__(self, decl: AllDecls, toplevel: bool = False) -> None: # noqa: C901, PLR0912
if not toplevel:
self.parents[decl] += 1
if decl in self._seen:
@@ -236,7 +236,7 @@ def __call__(
return expr_name
return expr
- def uncached(self, decl: AllDecls, *, unwrap_lit: bool, parens: bool, ruleset_name: str | None) -> tuple[str, str]: # noqa: PLR0911
+ def uncached(self, decl: AllDecls, *, unwrap_lit: bool, parens: bool, ruleset_name: str | None) -> tuple[str, str]: # noqa: C901, PLR0911, PLR0912
match decl:
case LitDecl(value):
match value:
@@ -382,7 +382,7 @@ def _call(
return expr_name, tp_name
return expr, tp_name
- def _call_inner( # noqa: PLR0911
+ def _call_inner( # noqa: C901, PLR0911, PLR0912
self,
ref: CallableRef,
args: list[ExprDecl],
@@ -513,6 +513,6 @@ def _plot_line_length(expr: object): # pragma: no cover
new_l = len(str(expr).split())
sizes.append((line_length, diff, new_l))
- df = pd.DataFrame(sizes, columns=["MAX_LINE_LENGTH", "LENGTH_DIFFERENCE", "n"]) # noqa: PD901
+ df = pd.DataFrame(sizes, columns=["MAX_LINE_LENGTH", "LENGTH_DIFFERENCE", "n"])
return alt.Chart(df).mark_rect().encode(x="MAX_LINE_LENGTH:O", y="LENGTH_DIFFERENCE:O", color="n:Q")
diff --git a/python/egglog/runtime.py b/python/egglog/runtime.py
index ea38a873..df891beb 100644
--- a/python/egglog/runtime.py
+++ b/python/egglog/runtime.py
@@ -81,7 +81,7 @@ def resolve_type_annotation(decls: Declarations, tp: object) -> TypeOrVarRef:
return resolve_type_annotation(decls, first)
# If the type is `object` then this is assumed to be a PyObjectLike, i.e. converted into a PyObject
- if tp == object:
+ if tp is object:
assert _PY_OBJECT_CLASS
return resolve_type_annotation(decls, _PY_OBJECT_CLASS)
# If the type is a `Callable` then convert it into a UnstableFn
diff --git a/python/tests/conftest.py b/python/tests/conftest.py
index e50a1f56..c96b391f 100644
--- a/python/tests/conftest.py
+++ b/python/tests/conftest.py
@@ -22,6 +22,6 @@ def serialize(self, data, **kwargs) -> bytes:
return str(data).encode()
-@pytest.fixture()
+@pytest.fixture
def snapshot_py(snapshot):
return snapshot.with_defaults(extension_class=PythonSnapshotExtension)
diff --git a/python/tests/test_typing.py b/python/tests/test_typing.py
index f8881d4c..0b58b008 100644
--- a/python/tests/test_typing.py
+++ b/python/tests/test_typing.py
@@ -35,6 +35,6 @@ def new_find_test_files(*args, **kwargs):
helpers.find_test_files = new_find_test_files
# Import TypeCheckSuite so it is picked up by pytest.
-from mypy.test.testcheck import TypeCheckSuite # noqa: E402
+from mypy.test.testcheck import TypeCheckSuite
__all__ = ["TypeCheckSuite"]