-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlivecam.py
149 lines (117 loc) · 4.7 KB
/
livecam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pickle
import mysql.connector
import face_recognition
import cv2
import numpy as np
import numpy as np
from PIL import ImageTk, Image
from datetime import datetime
from tkinter import ttk
from tkinter import *
from tkinter import filedialog
from PIL import ImageTk, Image
import shutil, os
import os
import threading
global cam_used
cam_used = 1
def markAttendance(name):
with open("attendance.csv", 'r+') as f:
myDatalist = f.readlines()
nameList = []
for line in myDatalist:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime("%H:%M:%S")
dyString = now.strftime("%d-%m-%y")
f.writelines(f'\n{name},{dtString},{dyString}')
# conn = sqlite3.connect("faceapp.db")
#
# c = conn.cursor()
#
# # c.executemany("INSERT INTO attendance VALUES (?,?,?)",name,dtString,timeString)
# # query = f"INSERT INTO attendance VALUES name,dtString,timeString"
# # c.execute(query)
# c.execute("INSERT INTO table VALUES (%s, %s, %s)", (name, dtString, timeString))
#
# print(c.fetchall())
# conn.commit()
# conn.close()
mydb = mysql.connector.connect(
host="localhost",
user="root",
password="",
database="faceapp"
)
print(mydb)
mycursor = mydb.cursor()
# mycursor.execute("CREATE DATABASE faceapp")
# mycursor.execute("CREATE TABLE attendance(name VARCHAR(255),dtString VARCHAR(255),dyString VARCHAR(255))")
sql = "INSERT INTO attendance (name, dtString, dyString) VALUES (%s, %s, %s)"
val = (name, dtString, dyString)
mycursor.execute(sql, val)
mydb.commit()
print(mycursor.rowcount, "record inserted.")
# f.writelines(f'\n{name},{dtString}')
i = 0
# listbox.insert(i, name)
i = i + 1
video_capture = cv2.VideoCapture(cam_used)
with open('dataset_faces.dat', 'rb') as f:
all_face_encodings = pickle.load(f)
known_face_names = list(all_face_encodings.keys())
known_face_encoding = np.array(list(all_face_encodings.values()))
print(len(known_face_encoding))
print(len(known_face_names))
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encoding, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encoding, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
markAttendance(name)
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()