-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdemo_mscca_mstrca_ssvep_recognition.m
556 lines (498 loc) · 28.5 KB
/
demo_mscca_mstrca_ssvep_recognition.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
%% Demo of multi-stimulus CCA or TRCA for SSVEP Recognition %%%
% In this code, we provide an example of using multi-stimulus canonical
% correlation analysis (msCCA) and for the ensemble task-related component
% analysis (eTRCA) SSVEP recognition. Besides, the extended CCA (eCCA) and
% the traditional eTRCA are also provided for comparison study.
% For the above algorithms, please refer the following papers for
% more details:
% msCCA: Wong, C. M., et al. (2019). Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs. Journal of neural engineering.
% ms-eTRCA: Wong, C. M., et al. (2019). Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs. Journal of neural engineering.
% eCCA: Chen, X., et al. (2015). High-speed spelling with a noninvasive brain?Vcomputer interface. Proceedings of the national academy of sciences, 112(44), E6058-E6067.
% eTRCA: Nakanishi, M., et al. (2017). Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Transactions on Biomedical Engineering, 65(1), 104-112.
% In this example, most parameters (such as number of harmonics, time-window lengths and number
% of neighboring templates) can be adjusted manually to explore their
% effects on the final performance
%
% This code is prepared by Chi Man Wong (chiman465@gmail.com)
% Date: 16 May 2020
% if you use this code for a publicatiodn, please cite the following papers
% @article{wong2020learning,
% title={Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs},
% author={Wong, Chi Man and Wan, Feng and Wang, Boyu and Wang, Ze and Nan, Wenya and Lao, Ka Fai and Mak, Peng Un and Vai, Mang I and Rosa, Agostinho},
% journal={Journal of Neural Engineering},
% volume={17},
% number={1},
% pages={016026},
% year={2020},
% publisher={IOP Publishing}
% }
% @article{wong2020spatial,
% title={Spatial Filtering in SSVEP-based BCIs: Unified Framework and New Improvements},
% author={Wong, Chi Man and Wang, Boyu and Wang, Ze and Lao, Ka Fai and Rosa, Agostinho and Wan, Feng},
% journal={IEEE Transactions on Biomedical Engineering},
% year={2020},
% publisher={IEEE}
% }
clear all;
close all;
% Please download the SSVEP benchmark dataset for this code
% Wang, Y., et al. (2016). A benchmark dataset for SSVEP-based brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1746-1752.
% Then indicate where the directory of the dataset is :
addpath('..\mytoolbox\');
Fs=250; % sample rate
dataset_no=1;
if dataset_no==1
str_dir='..\Tsinghua dataset 2016\';
num_of_wn=4; % for TDCA
num_of_k=8; % for TDCA
num_of_delay=6; % for TDCA
latencyDelay = round(0.14*Fs); % latency
num_of_subj=35; % Number of subjects (35 if you have the benchmark dataset)
ch_used=[48 54 55 56 57 58 61 62 63]; % Pz, PO5, PO3, POz, PO4, PO6, O1,Oz, O2 (in SSVEP benchmark dataset)
num_of_trials=5; % Number of training trials (1<=num_of_trials<=5)
pha_val=[0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 ...
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5]*pi;
sti_f=[8.0:1:15.0, 8.2:1:15.2,8.4:1:15.4,8.6:1:15.6,8.8:1:15.8];
n_sti=length(sti_f); % number of stimulus frequencies
[~,target_order]=sort(sti_f);
sti_f=sti_f(target_order);
elseif dataset_no==2
str_dir='..\BETA SSVEP dataset\';
num_of_wn=4; % for TDCA
num_of_k=9; % for TDCA
num_of_delay=4; % for TDCA
latencyDelay = round(0.13*Fs); % latency
num_of_subj=70;
ch_used=[48 54 55 56 57 58 61 62 63]; % Pz, PO5, PO3, POz, PO4, PO6, O1,Oz, O2 (in SSVEP benchmark dataset)
num_of_trials=3; % Number of training trials (1<=num_of_trials<=3)
pha_val=[0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 ...
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5]*pi;
sti_f=[8.6:0.2:15.8,8.0 8.2 8.4];
n_sti=length(sti_f); % number of stimulus frequencies
[~,target_order]=sort(sti_f);
sti_f=sti_f(target_order);
else
end
num_of_harmonics=5; % for all cca-based methods
num_of_signal_templates=12; % for mscca (1<=num_of_signal_templates<=40)
num_of_signal_templates2=2; % for ms-etrca (1<=num_of_signal_templates<=40)
num_of_r=4; % for ecca
num_of_subbands=5; % for filter bank analysis
FB_coef0=[1:num_of_subbands].^(-1.25)+0.25; % for filter bank analysis
% About the above parameter, please check the related paper:
% Chen, X., et al. (2015). Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain?Vcomputer interface. Journal of neural engineering, 12(4), 046008.
% time-window length (min_length:delta_t:max_length)
min_length=0.3;
delta_t=0.1;
max_length=1.0; % [min_length:delta_t:max_length]
TW = min_length:delta_t:max_length;
TW_p = round(TW*Fs);
enable_bit=[1 1 1 1 1]; % Select the algorithms: bit 1: eCCA, bit 2: ms-eCCA, bit 3: eTRCA, bit 4: ms-eTRCA, bit 5: TDCA, e.g., enable_bit=[1 1 1 1 1]; -> select all four algorithms
is_center_std=0; % 0: without , 1: with (zero mean, and unity standard deviation)
% Chebyshev Type I filter design
for k=1:num_of_subbands
Wp = [(8*k)/(Fs/2) 90/(Fs/2)];
Ws = [(8*k-2)/(Fs/2) 100/(Fs/2)];
[N,Wn] = cheb1ord(Wp,Ws,3,40);
[subband_signal(k).bpB,subband_signal(k).bpA] = cheby1(N,0.5,Wn);
end
%notch
Fo = 50;
Q = 35;
BW = (Fo/(Fs/2))/Q;
[notchB,notchA] = iircomb(Fs/Fo,BW,'notch');
seed = RandStream('mt19937ar','Seed','shuffle');
for tw_length=1:length(TW)
sig_len=TW_p(tw_length);
clear y_sb
for sn=1:num_of_subj
tic
if dataset_no==1
load(strcat(str_dir,'S',num2str(sn),'.mat'));
elseif dataset_no==2
load([str_dir 'S' num2str(sn) '.mat']);
eegdata=data.EEG;
data = permute(eegdata,[1 2 4 3]);
else
% load(strcat(str_dir,'\','exampleData.mat'));
end
% pre-stimulus period: 0.5 sec
% latency period: 0.14 sec
eeg=data(ch_used,floor(0.5*Fs)+1:floor(0.5*Fs+latencyDelay)+sig_len,:,:);
[d1_,d2_,d3_,d4_]=size(eeg);
d1=d3_;d2=d4_;d3=d1_;d4=d2_;
no_of_class=d1;
n_ch = d3;
% d1: num of stimuli
% d2: num of trials
% d3: num of channels % Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, O2
% d4: num of sampling points
if sn==1
for sub_band=1:num_of_subbands
subband_signal(sub_band).SSVEPdata = zeros(n_ch,sig_len,d2,d1);
subband_signal(sub_band).signal_template = zeros(n_ch,sig_len,d1);
end
end
for i=1:1:d1
for j=1:1:d2
y0=reshape(eeg(:,:,i,j),d3,d4);
% SSVEPdata(:,:,j,i)=reshape(y0,d3,d4,1,1);
y = filtfilt(notchB, notchA, y0.'); %notch
y = y.';
for sub_band=1:num_of_subbands
for ch_no=1:d3
tmp2=filtfilt(subband_signal(sub_band).bpB,subband_signal(sub_band).bpA,y(ch_no,:));
y_sb(ch_no,:) = tmp2(latencyDelay+1:latencyDelay+sig_len);
end
subband_signal(sub_band).SSVEPdata(:,:,j,i)=reshape(y_sb,d3,length(y_sb),1,1);
end
end
end
clear eeg
%% Initialization
% n_ch=size(SSVEPdata,1);
n_run=d2; % number of used runs
% SSVEPdata=SSVEPdata(:,:,:,target_order);
for sub_band=1:num_of_subbands
subband_signal(sub_band).SSVEPdata=subband_signal(sub_band).SSVEPdata(:,:,:,target_order); % To sort the orders of the data as 8.0, 8.2, 8.4, ..., 15.8 Hz
end
FB_coef=FB_coef0'*ones(1,n_sti);
n_correct=zeros(1,7); % Count how many correct detection
seq_0=zeros(d2,num_of_trials);
for run=1:d2
% % leave-one-run-out cross-validation
if (num_of_trials==1)
seq1=run;
elseif (num_of_trials==d2-1)
seq1=[1:n_run];
seq1(run)=[];
else
% leave-one-run-out cross-validation
% Randomly select the trials for training
isOK=0;
while (isOK==0)
seq=randperm(seed,d2);
seq1=seq(1:num_of_trials);
seq1=sort(seq1);
if isempty(find(sum((seq1'*ones(1,d2)-seq_0').^2)==0))
isOK=1;
end
end
end
idx_traindata=seq1; % index of the training trials
idx_testdata=1:n_run; % index of the testing trials
idx_testdata(seq1)=[];
for i=1:no_of_class
% if length(idx_traindata)>1
% signal_template(i,:,:)=mean(SSVEPdata(:,:,idx_traindata,i),3);
% else
% signal_template(i,:,:)=SSVEPdata(:,:,idx_traindata,i);
% end
for k=1:num_of_subbands
if length(idx_traindata)>1
subband_signal(k).signal_template(:,:,i)=mean(subband_signal(k).SSVEPdata(:,:,idx_traindata,i),3);
else
subband_signal(k).signal_template(:,:,i)=subband_signal(k).SSVEPdata(:,:,idx_traindata,i);
end
end
end
for run_test=1:length(idx_testdata)
% for tw_length=1:length(TW)
clear Xa Xa_train
% sig_len=TW_p(tw_length);
test_signal=zeros(d3,sig_len);
fprintf('Testing TW %fs, No.crossvalidation %d \n',TW(tw_length),idx_testdata(run_test));
% TDCA training
if enable_bit(5)==1
for sub_band=1:num_of_subbands
for j=1:no_of_class
Ref=ref_signal_nh(sti_f(j),Fs,0,sig_len,num_of_harmonics);
[Q_ref1,R_ref1]=qr(Ref',0);
P=Q_ref1*Q_ref1';
for train_no=1:length(idx_traindata)
traindata_1a=[];
for dn=1:num_of_delay
traindata=reshape(subband_signal(sub_band).SSVEPdata(:,[dn:sig_len],idx_traindata(train_no),j),d3,sig_len-dn+1);
if (is_center_std==1)
traindata=traindata-mean(traindata,2)*ones(1,length(traindata));
traindata=traindata./(std(traindata')'*ones(1,length(traindata)));
end
traindata_1a=[traindata_1a;[traindata zeros(length(ch_used),dn-1)]];
end
traindata_1a_P=traindata_1a*P;
if (is_center_std==1)
traindata_1a_P=traindata_1a_P-mean(traindata_1a_P,2)*ones(1,length(traindata_1a_P));
traindata_1a_P=traindata_1a_P./(std(traindata_1a_P')'*ones(1,length(traindata_1a_P)));
end
Xa(:,:,train_no,j)=[traindata_1a traindata_1a_P];
end
Xa_train(:,:,j,sub_band)=mean(Xa(:,:,:,j),3);
end
Sb=zeros(num_of_delay*d3);
Sw=zeros(num_of_delay*d3);
for j=1:no_of_class
for train_no=1:length(idx_traindata)
if length(idx_traindata)==1
X_tmp=Xa(:,:,train_no,j);
else
X_tmp=Xa(:,:,train_no,j)-mean(Xa(:,:,:,j),3);
end
Sw=Sw+X_tmp*X_tmp'/length(idx_traindata);
end
tmp=mean(Xa(:,:,:,j),3)-mean(mean(Xa,4),3);
Sb=Sb+tmp*tmp'/no_of_class;
end
[eig_v1,eig_d1]=eig(Sw\Sb);
[eig_val,sort_idx]=sort(diag(eig_d1),'descend');
eig_vec=eig_v1(:,sort_idx(1:num_of_k));
tdca_W(:,:,sub_band)=eig_vec;
end
end
for i=1:no_of_class
for sub_band=1:num_of_subbands
test_signal=subband_signal(sub_band).SSVEPdata(:,1:TW_p(tw_length),idx_testdata(run_test),i);
if (is_center_std==1)
test_signal=test_signal-mean(test_signal,2)*ones(1,length(test_signal));
test_signal=test_signal./(std(test_signal')'*ones(1,length(test_signal)));
end
for j=1:no_of_class
template=subband_signal(sub_band).signal_template(:,[1:sig_len],j);
if (is_center_std==1)
template=template-mean(template,2)*ones(1,length(template));
template=template./(std(template')'*ones(1,length(template)));
end
% Generate the sine-cosine reference signal
ref1=ref_signal_nh(sti_f(j),Fs,pha_val(j),sig_len,num_of_harmonics);
% ================ eCCA ===============
if (enable_bit(1)==1)
[ecca_r1,CR(sub_band,j),itR(sub_band,j),CCAR(sub_band,j)]=extendedCCA(test_signal,ref1,template,num_of_r);
else
CR(sub_band,j)=0;
itR(sub_band,j)=0;
CCAR(sub_band,j)=0;
end
% =============== ms-eCCA ===============
if (enable_bit(2)==1)
if (i==1)
% find the indices of neighboring templates
d0=floor(num_of_signal_templates/2);
if j<=d0
template_st=1;
template_ed=num_of_signal_templates;
elseif ((j>d0) && j<(d1-d0+1))
template_st=j-d0;
template_ed=j+(num_of_signal_templates-d0-1);
else
template_st=(d1-num_of_signal_templates+1);
template_ed=d1;
end
mscca_template=[];
mscca_ref=[];
template_seq=[template_st:template_ed];
% Concatenation of the templates (or sine-cosine references)
for n_temp=1:num_of_signal_templates
template0=subband_signal(sub_band).signal_template(:,1:sig_len,template_seq(n_temp));
if (is_center_std==1)
template0=template0-mean(template0,2)*ones(1,length(template0));
template0=template0./(std(template0')'*ones(1,length(template0)));
end
ref0=ref_signal_nh(sti_f(template_seq(n_temp)),Fs,pha_val(template_seq(n_temp)),sig_len,num_of_harmonics);
mscca_template=[mscca_template;template0'];
mscca_ref=[mscca_ref;ref0'];
end
% ========mscca spatial filter=====
[Wx1,Wy1,cr1]=canoncorr(mscca_template,mscca_ref(:,1:end));
spatial_filter1(sub_band,j).wx1=Wx1(:,1)';
spatial_filter1(sub_band,j).wy1=Wy1(:,1)';
end
cr1=corrcoef((spatial_filter1(sub_band,j).wx1*test_signal)',(spatial_filter1(sub_band,j).wy1*ref1)');
cr2=corrcoef((spatial_filter1(sub_band,j).wx1*test_signal)',(spatial_filter1(sub_band,j).wx1*template)');
%
msccaR(sub_band,j)=sign(cr1(1,2))*cr1(1,2)^2+sign(cr2(1,2))*cr2(1,2)^2;
else
msccaR(sub_band,j)=0;
end
%===============eTRCA==================
if (enable_bit(3)==1)
if (num_of_trials==1)
% num_of_trials cannot be less than 2
% in TRCA
TRCAR(sub_band,j)=0;
else
if ((i==1) && (j==1))
W_eTRCA(sub_band).val=[];
for jj=1:no_of_class
trca_X2=[];
trca_X1=zeros(d3,sig_len);
for tr=1:num_of_trials
X0=reshape(subband_signal(sub_band).SSVEPdata(:,1:sig_len,idx_traindata(tr),jj),d3,sig_len);
if (is_center_std==1)
X0=X0-mean(X0,2)*ones(1,length(X0));
X0=X0./(std(X0')'*ones(1,length(X0)));
end
trca_X1=trca_X1+X0;
trca_X2=[trca_X2;X0'];
end
S=trca_X1*trca_X1'-trca_X2'*trca_X2;
Q=trca_X2'*trca_X2;
[eig_v1,eig_d1]=eig(Q\S);
[eig_val,sort_idx]=sort(diag(eig_d1),'descend');
eig_vec=eig_v1(:,sort_idx);
W_eTRCA(sub_band).val=[W_eTRCA(sub_band).val; eig_vec(:,1)'];
end
end
cr1=corrcoef(W_eTRCA(sub_band).val*test_signal,W_eTRCA(sub_band).val*template);
TRCAR(sub_band,j)=cr1(1,2);
end
else
TRCAR(sub_band,j)=0;
end
%===============ms-eTRCA==================
if (enable_bit(4)==1)
if (num_of_trials==1)
% num_of_trials cannot be less than 2
% in eTRCA
MSTRCAR(sub_band,j)=0;
else
if ((i==1) && (j==1))
W_msTRCA(sub_band).val=[];
for my_j=1:no_of_class
d0=floor(num_of_signal_templates2/2);
if my_j<=d0
template_st=1;
template_ed=num_of_signal_templates2;
elseif ((my_j>d0) && my_j<(d1-d0+1))
template_st=my_j-d0;
template_ed=my_j+(num_of_signal_templates2-d0-1);
else
template_st=(d1-num_of_signal_templates2+1);
template_ed=d1;
end
template_seq=[template_st:template_ed];
mstrca_X1=[];
mstrca_X2=[];
for n_temp=1:num_of_signal_templates2
jj=template_seq(n_temp);
trca_X2=[];
trca_X1=zeros(d3,sig_len);
template2=zeros(d3,sig_len);
for tr=1:num_of_trials
X0=reshape(subband_signal(sub_band).SSVEPdata(:,1:sig_len,idx_traindata(tr),jj),d3,sig_len);
if (is_center_std==1)
X0=X0-mean(X0,2)*ones(1,length(X0));
X0=X0./(std(X0')'*ones(1,length(X0)));
end
trca_X2=[trca_X2;X0'];
trca_X1=trca_X1+X0;
end
mstrca_X1=[mstrca_X1 trca_X1];
mstrca_X2=[mstrca_X2 trca_X2'];
end
S=mstrca_X1*mstrca_X1'-mstrca_X2*mstrca_X2';
Q=mstrca_X2*mstrca_X2';
[eig_v1,eig_d1]=eig(Q\S);
[eig_val,sort_idx]=sort(diag(eig_d1),'descend');
eig_vec=eig_v1(:,sort_idx);
W_msTRCA(sub_band).val=[W_msTRCA(sub_band).val; eig_vec(:,1)'];
end
end
cr1=corrcoef(W_msTRCA(sub_band).val*test_signal,W_msTRCA(sub_band).val*template);
MSTRCAR(sub_band,j)=cr1(1,2);
if (enable_bit(2)==1)
cr2=corrcoef((spatial_filter1(sub_band,j).wx1*test_signal)',(spatial_filter1(sub_band,j).wy1*ref1)');
MSCCATRCAR(sub_band,j)=sign(cr1(1,2))*cr1(1,2)^2+sign(cr2(1,2))*cr2(1,2)^2;
else
MSCCATRCAR(sub_band,j)=0;
end
end
else
MSTRCAR(sub_band,j)=0;
MSCCATRCAR(sub_band,j)=0;
end
%===============TDCA==================
if (enable_bit(5)==1)
if (num_of_trials==1)
% num_of_trials cannot be less than 2
TDCAR(sub_band,j)=0;
else
test_signal_1a=[];
for dn=1:num_of_delay
z=[test_signal(:,dn:end) zeros(length(ch_used),dn-1)];
test_signal_1a=[test_signal_1a;z];
end
Ref=ref_signal_nh(sti_f(j),Fs,0,sig_len,num_of_harmonics);
[Q_ref1,R_ref1]=qr(Ref',0);
P=Q_ref1*Q_ref1';
test_signal_1a_P=test_signal_1a*P;
Xb=[test_signal_1a test_signal_1a_P];
W=tdca_W(:,:,sub_band);
TDCAR(sub_band,j)=corr2(W'*Xb,W'*Xa_train(:,:,j,sub_band));
end
else
TDCAR(sub_band,j)=0;
end
end
end
CCAR1=sum((CCAR).*FB_coef,1);
CR1=sum((CR).*FB_coef,1);
msccaR1=sum((msccaR).*FB_coef,1);
TRCAR1=sum((TRCAR).*FB_coef,1);
MSTRCAR1=sum((MSTRCAR).*FB_coef,1);
MSCCATRCAR1=sum((MSCCATRCAR).*FB_coef,1);
TDCAR1=sum((TDCAR).*FB_coef,1);
[~,idx]=max(CCAR1);
if idx==i
n_correct(1)=n_correct(1)+1;
end
[~,idx]=max(CR1);
if idx==i
n_correct(2)=n_correct(2)+1;
end
[~,idx]=max(msccaR1);
if idx==i
n_correct(3)=n_correct(3)+1;
end
[~,idx]=max(TRCAR1);
if idx==i
n_correct(4)=n_correct(4)+1;
end
[~,idx]=max(MSTRCAR1);
if idx==i
n_correct(5)=n_correct(5)+1;
end
[~,idx]=max(MSCCATRCAR1);
if idx==i
n_correct(6)=n_correct(6)+1;
end
[~,idx]=max(TDCAR1);
if idx==i
n_correct(7)=n_correct(7)+1;
end
end
% end
end
idx_train_run(run,:)=idx_traindata;
idx_test_run(run,:)=idx_testdata;
seq_0(run,:)=seq1;
end
%% Save results
toc
accuracy=100*n_correct/n_sti/n_run/length(idx_testdata)
all_sub_acc(tw_length,sn,:)=accuracy;
% all_sub_acc(:,:,i)
% i= 1: CCA
% i= 2: eCCA
% i= 3: ms-eCCA
% i= 4: eTRCA
% i= 5: ms-eTRCA
% i= 6: ms-eCCA + ms-eTRCA
% i= 7: TDCA
disp(sn)
if dataset_no==1
save save_all_sub_acc_th.mat all_sub_acc
elseif dataset_no==2
save save_all_sub_acc_beta.mat all_sub_acc
else
end
end
end