-
-
Notifications
You must be signed in to change notification settings - Fork 41
/
minicoro.h
2033 lines (1812 loc) · 70.8 KB
/
minicoro.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Minimal asymmetric stackful cross-platform coroutine library in pure C.
minicoro - v0.2.0 - 15/Nov/2023
Eduardo Bart - edub4rt@gmail.com
https://github.com/edubart/minicoro
Minicoro is single file library for using asymmetric coroutines in C.
The API is inspired by Lua coroutines but with C use in mind.
# Features
- Stackful asymmetric coroutines.
- Supports nesting coroutines (resuming a coroutine from another coroutine).
- Supports custom allocators.
- Storage system to allow passing values between yield and resume.
- Customizable stack size.
- Supports growable stacks and low memory footprint when enabling the virtual memory allocator.
- Coroutine API design inspired by Lua with C use in mind.
- Yield across any C function.
- Made to work in multithread applications.
- Cross platform.
- Minimal, self contained and no external dependencies.
- Readable sources and documented.
- Implemented via assembly, ucontext or fibers.
- Lightweight and very efficient.
- Works in most C89 compilers.
- Error prone API, returning proper error codes on misuse.
- Support running with Valgrind, ASan (AddressSanitizer) and TSan (ThreadSanitizer).
# Supported Platforms
Most platforms are supported through different methods:
| Platform | Assembly Method | Fallback Method |
|--------------|------------------|-------------------|
| Android | ARM/ARM64 | N/A |
| iOS | ARM/ARM64 | N/A |
| Windows | x86_64 | Windows fibers |
| Linux | x86_64/i686 | ucontext |
| Mac OS X | x86_64/ARM/ARM64 | ucontext |
| WebAssembly | N/A | Emscripten fibers / Binaryen asyncify |
| Raspberry Pi | ARM | ucontext |
| RISC-V | rv64/rv32 | ucontext |
The assembly method is used by default if supported by the compiler and CPU,
otherwise ucontext or fiber method is used as a fallback.
The assembly method is very efficient, it just take a few cycles
to create, resume, yield or destroy a coroutine.
# Caveats
- Avoid using coroutines with C++ exceptions, this is not recommended, it may not behave as you expect.
- When using C++ RAII (i.e. destructors) you must resume the coroutine until it dies to properly execute all destructors.
- Some unsupported sanitizers for C may trigger false warnings when using coroutines.
- The `mco_coro` object is not thread safe, you should use a mutex for manipulating it in multithread applications.
- To use in multithread applications, you must compile with C compiler that supports `thread_local` qualifier.
- Avoid using `thread_local` inside coroutine code, the compiler may cache thread local variables pointers which can be invalid when a coroutine switch threads.
- Stack space is limited. By default it has 56KB of space, this can be changed on coroutine creation, or by enabling the virtual memory backed allocator to make it 2040KB.
- Take care to not cause stack overflows (run out of stack space), otherwise your program may crash or not, the behavior is undefined.
- On WebAssembly you must compile with Emscripten flag `-s ASYNCIFY=1`.
- The WebAssembly Binaryen asyncify method can be used when explicitly enabled,
you may want to do this only to use minicoro with WebAssembly native interpreters
(no Web browser). This method is confirmed to work well with Emscripten toolchain,
however it fails on other WebAssembly toolchains like WASI SDK.
# Introduction
A coroutine represents an independent "green" thread of execution.
Unlike threads in multithread systems, however,
a coroutine only suspends its execution by explicitly calling a yield function.
You create a coroutine by calling `mco_create`.
Its sole argument is a `mco_desc` structure with a description for the coroutine.
The `mco_create` function only creates a new coroutine and returns a handle to it, it does not start the coroutine.
You execute a coroutine by calling `mco_resume`.
When calling a resume function the coroutine starts its execution by calling its body function.
After the coroutine starts running, it runs until it terminates or yields.
A coroutine yields by calling `mco_yield`.
When a coroutine yields, the corresponding resume returns immediately,
even if the yield happens inside nested function calls (that is, not in the main function).
The next time you resume the same coroutine, it continues its execution from the point where it yielded.
To associate a persistent value with the coroutine,
you can optionally set `user_data` on its creation and later retrieve with `mco_get_user_data`.
To pass values between resume and yield,
you can optionally use `mco_push` and `mco_pop` APIs,
they are intended to pass temporary values using a LIFO style buffer.
The storage system can also be used to send and receive initial values on coroutine creation or before it finishes.
# Usage
To use minicoro, do the following in one .c file:
```c
#define MINICORO_IMPL
#include "minicoro.h"
```
You can do `#include "minicoro.h"` in other parts of the program just like any other header.
## Minimal Example
The following simple example demonstrates on how to use the library:
```c
#define MINICORO_IMPL
#include "minicoro.h"
#include <stdio.h>
#include <assert.h>
// Coroutine entry function.
void coro_entry(mco_coro* co) {
printf("coroutine 1\n");
mco_yield(co);
printf("coroutine 2\n");
}
int main() {
// First initialize a `desc` object through `mco_desc_init`.
mco_desc desc = mco_desc_init(coro_entry, 0);
// Configure `desc` fields when needed (e.g. customize user_data or allocation functions).
desc.user_data = NULL;
// Call `mco_create` with the output coroutine pointer and `desc` pointer.
mco_coro* co;
mco_result res = mco_create(&co, &desc);
assert(res == MCO_SUCCESS);
// The coroutine should be now in suspended state.
assert(mco_status(co) == MCO_SUSPENDED);
// Call `mco_resume` to start for the first time, switching to its context.
res = mco_resume(co); // Should print "coroutine 1".
assert(res == MCO_SUCCESS);
// We get back from coroutine context in suspended state (because it's unfinished).
assert(mco_status(co) == MCO_SUSPENDED);
// Call `mco_resume` to resume for a second time.
res = mco_resume(co); // Should print "coroutine 2".
assert(res == MCO_SUCCESS);
// The coroutine finished and should be now dead.
assert(mco_status(co) == MCO_DEAD);
// Call `mco_destroy` to destroy the coroutine.
res = mco_destroy(co);
assert(res == MCO_SUCCESS);
return 0;
}
```
_NOTE_: In case you don't want to use the minicoro allocator system you should
allocate a coroutine object yourself using `mco_desc.coro_size` and call `mco_init`,
then later to destroy call `mco_uninit` and deallocate it.
## Yielding from anywhere
You can yield the current running coroutine from anywhere
without having to pass `mco_coro` pointers around,
to this just use `mco_yield(mco_running())`.
## Passing data between yield and resume
The library has the storage interface to assist passing data between yield and resume.
It's usage is straightforward,
use `mco_push` to send data before a `mco_resume` or `mco_yield`,
then later use `mco_pop` after a `mco_resume` or `mco_yield` to receive data.
Take care to not mismatch a push and pop, otherwise these functions will return
an error.
## Error handling
The library return error codes in most of its API in case of misuse or system error,
the user is encouraged to handle them properly.
## Virtual memory backed allocator
The new compile time option `MCO_USE_VMEM_ALLOCATOR` enables a virtual memory backed allocator.
Every stackful coroutine usually have to reserve memory for its full stack,
this typically makes the total memory usage very high when allocating thousands of coroutines,
for example, an application with 100 thousands coroutine with stacks of 56KB would consume as high
as 5GB of memory, however your application may not really full stack usage for every coroutine.
Some developers often prefer stackless coroutines over stackful coroutines
because of this problem, stackless memory footprint is low, therefore often considered more lightweight.
However stackless have many other limitations, like you cannot run unconstrained code inside them.
One remedy to the solution is to make stackful coroutines growable,
to only use physical memory on demand when its really needed,
and there is a nice way to do this relying on virtual memory allocation
when supported by the operating system.
The virtual memory backed allocator will reserve virtual memory in the OS for each coroutine stack,
but not trigger real physical memory usage yet.
While the application virtual memory usage will be high,
the physical memory usage will be low and actually grow on demand (usually every 4KB chunk in Linux).
The virtual memory backed allocator also raises the default stack size to about 2MB,
typically the size of extra threads in Linux,
so you have more space in your coroutines and the risk of stack overflow is low.
As an example, allocating 100 thousands coroutines with nearly 2MB stack reserved space
with the virtual memory allocator uses 783MB of physical memory usage, that is about 8KB per coroutine,
however the virtual memory usage will be at 98GB.
It is recommended to enable this option only if you plan to spawn thousands of coroutines
while wanting to have a low memory footprint.
Not all environments have an OS with virtual memory support, therefore this option is disabled by default.
This option may add an order of magnitude overhead to `mco_create()`/`mco_destroy()`,
because they will request the OS to manage virtual memory page tables,
if this is a problem for you, please customize a custom allocator for your own needs.
## Library customization
The following can be defined to change the library behavior:
- `MCO_API` - Public API qualifier. Default is `extern`.
- `MCO_MIN_STACK_SIZE` - Minimum stack size when creating a coroutine. Default is 32768 (32KB).
- `MCO_DEFAULT_STORAGE_SIZE` - Size of coroutine storage buffer. Default is 1024.
- `MCO_DEFAULT_STACK_SIZE` - Default stack size when creating a coroutine. Default is 57344 (56KB). When `MCO_USE_VMEM_ALLOCATOR` is true the default is 2040KB (nearly 2MB).
- `MCO_ALLOC` - Default allocation function. Default is `calloc`.
- `MCO_DEALLOC` - Default deallocation function. Default is `free`.
- `MCO_USE_VMEM_ALLOCATOR` - Use virtual memory backed allocator, improving memory footprint per coroutine.
- `MCO_NO_DEFAULT_ALLOCATOR` - Disable the default allocator using `MCO_ALLOC` and `MCO_DEALLOC`.
- `MCO_ZERO_MEMORY` - Zero memory of stack when poping storage, intended for garbage collected environments.
- `MCO_DEBUG` - Enable debug mode, logging any runtime error to stdout. Defined automatically unless `NDEBUG` or `MCO_NO_DEBUG` is defined.
- `MCO_NO_DEBUG` - Disable debug mode.
- `MCO_NO_MULTITHREAD` - Disable multithread usage. Multithread is supported when `thread_local` is supported.
- `MCO_USE_ASM` - Force use of assembly context switch implementation.
- `MCO_USE_UCONTEXT` - Force use of ucontext context switch implementation.
- `MCO_USE_FIBERS` - Force use of fibers context switch implementation.
- `MCO_USE_ASYNCIFY` - Force use of Binaryen asyncify context switch implementation.
- `MCO_USE_VALGRIND` - Define if you want run with valgrind to fix accessing memory errors.
# License
Your choice of either Public Domain or MIT No Attribution, see end of file.
*/
#ifndef MINICORO_H
#define MINICORO_H
#ifdef __cplusplus
extern "C" {
#endif
/* Public API qualifier. */
#ifndef MCO_API
#define MCO_API extern
#endif
/* Size of coroutine storage buffer. */
#ifndef MCO_DEFAULT_STORAGE_SIZE
#define MCO_DEFAULT_STORAGE_SIZE 1024
#endif
#include <stddef.h> /* for size_t */
/* ---------------------------------------------------------------------------------------------- */
/* Coroutine states. */
typedef enum mco_state {
MCO_DEAD = 0, /* The coroutine has finished normally or was uninitialized before finishing. */
MCO_NORMAL, /* The coroutine is active but not running (that is, it has resumed another coroutine). */
MCO_RUNNING, /* The coroutine is active and running. */
MCO_SUSPENDED /* The coroutine is suspended (in a call to yield, or it has not started running yet). */
} mco_state;
/* Coroutine result codes. */
typedef enum mco_result {
MCO_SUCCESS = 0,
MCO_GENERIC_ERROR,
MCO_INVALID_POINTER,
MCO_INVALID_COROUTINE,
MCO_NOT_SUSPENDED,
MCO_NOT_RUNNING,
MCO_MAKE_CONTEXT_ERROR,
MCO_SWITCH_CONTEXT_ERROR,
MCO_NOT_ENOUGH_SPACE,
MCO_OUT_OF_MEMORY,
MCO_INVALID_ARGUMENTS,
MCO_INVALID_OPERATION,
MCO_STACK_OVERFLOW
} mco_result;
/* Coroutine structure. */
typedef struct mco_coro mco_coro;
struct mco_coro {
void* context;
mco_state state;
void (*func)(mco_coro* co);
mco_coro* prev_co;
void* user_data;
size_t coro_size;
void* allocator_data;
void (*dealloc_cb)(void* ptr, size_t size, void* allocator_data);
void* stack_base; /* Stack base address, can be used to scan memory in a garbage collector. */
size_t stack_size;
unsigned char* storage;
size_t bytes_stored;
size_t storage_size;
void* asan_prev_stack; /* Used by address sanitizer. */
void* tsan_prev_fiber; /* Used by thread sanitizer. */
void* tsan_fiber; /* Used by thread sanitizer. */
size_t magic_number; /* Used to check stack overflow. */
};
/* Structure used to initialize a coroutine. */
typedef struct mco_desc {
void (*func)(mco_coro* co); /* Entry point function for the coroutine. */
void* user_data; /* Coroutine user data, can be get with `mco_get_user_data`. */
/* Custom allocation interface. */
void* (*alloc_cb)(size_t size, void* allocator_data); /* Custom allocation function. */
void (*dealloc_cb)(void* ptr, size_t size, void* allocator_data); /* Custom deallocation function. */
void* allocator_data; /* User data pointer passed to `alloc`/`dealloc` allocation functions. */
size_t storage_size; /* Coroutine storage size, to be used with the storage APIs. */
/* These must be initialized only through `mco_init_desc`. */
size_t coro_size; /* Coroutine structure size. */
size_t stack_size; /* Coroutine stack size. */
} mco_desc;
/* Coroutine functions. */
MCO_API mco_desc mco_desc_init(void (*func)(mco_coro* co), size_t stack_size); /* Initialize description of a coroutine. When stack size is 0 then MCO_DEFAULT_STACK_SIZE is used. */
MCO_API mco_result mco_init(mco_coro* co, mco_desc* desc); /* Initialize the coroutine. */
MCO_API mco_result mco_uninit(mco_coro* co); /* Uninitialize the coroutine, may fail if it's not dead or suspended. */
MCO_API mco_result mco_create(mco_coro** out_co, mco_desc* desc); /* Allocates and initializes a new coroutine. */
MCO_API mco_result mco_destroy(mco_coro* co); /* Uninitialize and deallocate the coroutine, may fail if it's not dead or suspended. */
MCO_API mco_result mco_resume(mco_coro* co); /* Starts or continues the execution of the coroutine. */
MCO_API mco_result mco_yield(mco_coro* co); /* Suspends the execution of a coroutine. */
MCO_API mco_state mco_status(mco_coro* co); /* Returns the status of the coroutine. */
MCO_API void* mco_get_user_data(mco_coro* co); /* Get coroutine user data supplied on coroutine creation. */
/* Storage interface functions, used to pass values between yield and resume. */
MCO_API mco_result mco_push(mco_coro* co, const void* src, size_t len); /* Push bytes to the coroutine storage. Use to send values between yield and resume. */
MCO_API mco_result mco_pop(mco_coro* co, void* dest, size_t len); /* Pop bytes from the coroutine storage. Use to get values between yield and resume. */
MCO_API mco_result mco_peek(mco_coro* co, void* dest, size_t len); /* Like `mco_pop` but it does not consumes the storage. */
MCO_API size_t mco_get_bytes_stored(mco_coro* co); /* Get the available bytes that can be retrieved with a `mco_pop`. */
MCO_API size_t mco_get_storage_size(mco_coro* co); /* Get the total storage size. */
/* Misc functions. */
MCO_API mco_coro* mco_running(void); /* Returns the running coroutine for the current thread. */
MCO_API const char* mco_result_description(mco_result res); /* Get the description of a result. */
#ifdef __cplusplus
}
#endif
#endif /* MINICORO_H */
#ifdef MINICORO_IMPL
#ifdef __cplusplus
extern "C" {
#endif
/* ---------------------------------------------------------------------------------------------- */
/* Minimum stack size when creating a coroutine. */
#ifndef MCO_MIN_STACK_SIZE
#define MCO_MIN_STACK_SIZE 32768
#endif
/* Default stack size when creating a coroutine. */
#ifndef MCO_DEFAULT_STACK_SIZE
/* Use multiples of 64KB minus 8KB, because 8KB is reserved for coroutine internal structures. */
#ifdef MCO_USE_VMEM_ALLOCATOR
#define MCO_DEFAULT_STACK_SIZE 2040*1024 /* 2040KB, nearly the same stack size of a thread in x86_64 Linux. */
#else
#define MCO_DEFAULT_STACK_SIZE 56*1024 /* 56KB */
#endif
#endif
/* Number used only to assist checking for stack overflows. */
#define MCO_MAGIC_NUMBER 0x7E3CB1A9
/* Detect implementation based on OS, arch and compiler. */
#if !defined(MCO_USE_UCONTEXT) && !defined(MCO_USE_FIBERS) && !defined(MCO_USE_ASM) && !defined(MCO_USE_ASYNCIFY)
#if defined(_WIN32)
#if (defined(__GNUC__) && defined(__x86_64__)) || (defined(_MSC_VER) && defined(_M_X64))
#define MCO_USE_ASM
#else
#define MCO_USE_FIBERS
#endif
#elif defined(__CYGWIN__) /* MSYS */
#define MCO_USE_UCONTEXT
#elif defined(__EMSCRIPTEN__)
#define MCO_USE_FIBERS
#elif defined(__wasm__)
#define MCO_USE_ASYNCIFY
#else
#if __GNUC__ >= 3 /* Assembly extension supported. */
#if defined(__x86_64__) || \
defined(__i386) || defined(__i386__) || \
defined(__ARM_EABI__) || defined(__aarch64__) || \
defined(__riscv)
#define MCO_USE_ASM
#else
#define MCO_USE_UCONTEXT
#endif
#else
#define MCO_USE_UCONTEXT
#endif
#endif
#endif
#define _MCO_UNUSED(x) (void)(x)
#if !defined(MCO_NO_DEBUG) && !defined(NDEBUG) && !defined(MCO_DEBUG)
#define MCO_DEBUG
#endif
#ifndef MCO_LOG
#ifdef MCO_DEBUG
#include <stdio.h>
#define MCO_LOG(s) puts(s)
#else
#define MCO_LOG(s)
#endif
#endif
#ifndef MCO_ASSERT
#ifdef MCO_DEBUG
#include <assert.h>
#define MCO_ASSERT(c) assert(c)
#else
#define MCO_ASSERT(c)
#endif
#endif
#ifndef MCO_THREAD_LOCAL
#ifdef MCO_NO_MULTITHREAD
#define MCO_THREAD_LOCAL
#else
#ifdef thread_local
#define MCO_THREAD_LOCAL thread_local
#elif __STDC_VERSION__ >= 201112 && !defined(__STDC_NO_THREADS__)
#define MCO_THREAD_LOCAL _Thread_local
#elif defined(_WIN32) && (defined(_MSC_VER) || defined(__ICL) || defined(__DMC__) || defined(__BORLANDC__))
#define MCO_THREAD_LOCAL __declspec(thread)
#elif defined(__GNUC__) || defined(__SUNPRO_C) || defined(__xlC__)
#define MCO_THREAD_LOCAL __thread
#else /* No thread local support, `mco_running` will be thread unsafe. */
#define MCO_THREAD_LOCAL
#define MCO_NO_MULTITHREAD
#endif
#endif
#endif
#ifndef MCO_FORCE_INLINE
#ifdef _MSC_VER
#define MCO_FORCE_INLINE __forceinline
#elif defined(__GNUC__)
#if defined(__STRICT_ANSI__)
#define MCO_FORCE_INLINE __inline__ __attribute__((always_inline))
#else
#define MCO_FORCE_INLINE inline __attribute__((always_inline))
#endif
#elif defined(__BORLANDC__) || defined(__DMC__) || defined(__SC__) || defined(__WATCOMC__) || defined(__LCC__) || defined(__DECC)
#define MCO_FORCE_INLINE __inline
#else /* No inline support. */
#define MCO_FORCE_INLINE
#endif
#endif
#ifndef MCO_NO_INLINE
#ifdef __GNUC__
#define MCO_NO_INLINE __attribute__((noinline))
#elif defined(_MSC_VER)
#define MCO_NO_INLINE __declspec(noinline)
#else
#define MCO_NO_INLINE
#endif
#endif
#if defined(_WIN32) && (defined(MCO_USE_FIBERS) || defined(MCO_USE_VMEM_ALLOCATOR))
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x0400
#endif
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#endif
#ifndef MCO_NO_DEFAULT_ALLOCATOR
#if defined(MCO_USE_VMEM_ALLOCATOR) && defined(_WIN32)
static void* mco_alloc(size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
}
static void mco_dealloc(void* ptr, size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
_MCO_UNUSED(size);
int res = VirtualFree(ptr, 0, MEM_RELEASE);
_MCO_UNUSED(res);
MCO_ASSERT(res != 0);
}
#elif defined(MCO_USE_VMEM_ALLOCATOR) /* POSIX virtual memory allocator */
#include <sys/mman.h>
static void* mco_alloc(size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
return ptr != MAP_FAILED ? ptr : NULL;
}
static void mco_dealloc(void* ptr, size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
int res = munmap(ptr, size);
_MCO_UNUSED(res);
MCO_ASSERT(res == 0);
}
#else /* C allocator */
#ifndef MCO_ALLOC
#include <stdlib.h>
/* We use calloc() so we give a chance for the OS to reserve virtual memory without really using physical memory,
calloc() also has the nice property of initializing the stack to zeros. */
#define MCO_ALLOC(size) calloc(1, size)
#define MCO_DEALLOC(ptr, size) free(ptr)
#endif
static void* mco_alloc(size_t size, void* allocator_data) {
_MCO_UNUSED(allocator_data);
return MCO_ALLOC(size);
}
static void mco_dealloc(void* ptr, size_t size, void* allocator_data) {
_MCO_UNUSED(size);
_MCO_UNUSED(allocator_data);
MCO_DEALLOC(ptr, size);
}
#endif /* MCO_USE_VMEM_ALLOCATOR */
#endif /* MCO_NO_DEFAULT_ALLOCATOR */
#if defined(__has_feature)
#if __has_feature(address_sanitizer)
#define _MCO_USE_ASAN
#endif
#if __has_feature(thread_sanitizer)
#define _MCO_USE_TSAN
#endif
#endif
#if defined(__SANITIZE_ADDRESS__)
#define _MCO_USE_ASAN
#endif
#if defined(__SANITIZE_THREAD__)
#define _MCO_USE_TSAN
#endif
#ifdef _MCO_USE_ASAN
void __sanitizer_start_switch_fiber(void** fake_stack_save, const void *bottom, size_t size);
void __sanitizer_finish_switch_fiber(void* fake_stack_save, const void **bottom_old, size_t *size_old);
#endif
#ifdef _MCO_USE_TSAN
void* __tsan_get_current_fiber(void);
void* __tsan_create_fiber(unsigned flags);
void __tsan_destroy_fiber(void* fiber);
void __tsan_switch_to_fiber(void* fiber, unsigned flags);
#endif
#include <string.h> /* For memcpy and memset. */
/* Utility for aligning addresses. */
static MCO_FORCE_INLINE size_t _mco_align_forward(size_t addr, size_t align) {
return (addr + (align-1)) & ~(align-1);
}
/* Variable holding the current running coroutine per thread. */
static MCO_THREAD_LOCAL mco_coro* mco_current_co = NULL;
static MCO_FORCE_INLINE void _mco_prepare_jumpin(mco_coro* co) {
/* Set the old coroutine to normal state and update it. */
mco_coro* prev_co = mco_running(); /* Must access through `mco_running`. */
MCO_ASSERT(co->prev_co == NULL);
co->prev_co = prev_co;
if(prev_co) {
MCO_ASSERT(prev_co->state == MCO_RUNNING);
prev_co->state = MCO_NORMAL;
}
mco_current_co = co;
#ifdef _MCO_USE_ASAN
if(prev_co) {
void* bottom_old = NULL;
size_t size_old = 0;
__sanitizer_finish_switch_fiber(prev_co->asan_prev_stack, (const void**)&bottom_old, &size_old);
prev_co->asan_prev_stack = NULL;
}
__sanitizer_start_switch_fiber(&co->asan_prev_stack, co->stack_base, co->stack_size);
#endif
#ifdef _MCO_USE_TSAN
co->tsan_prev_fiber = __tsan_get_current_fiber();
__tsan_switch_to_fiber(co->tsan_fiber, 0);
#endif
}
static MCO_FORCE_INLINE void _mco_prepare_jumpout(mco_coro* co) {
/* Switch back to the previous running coroutine. */
/* MCO_ASSERT(mco_running() == co); */
mco_coro* prev_co = co->prev_co;
co->prev_co = NULL;
if(prev_co) {
/* MCO_ASSERT(prev_co->state == MCO_NORMAL); */
prev_co->state = MCO_RUNNING;
}
mco_current_co = prev_co;
#ifdef _MCO_USE_ASAN
void* bottom_old = NULL;
size_t size_old = 0;
__sanitizer_finish_switch_fiber(co->asan_prev_stack, (const void**)&bottom_old, &size_old);
co->asan_prev_stack = NULL;
if(prev_co) {
__sanitizer_start_switch_fiber(&prev_co->asan_prev_stack, bottom_old, size_old);
}
#endif
#ifdef _MCO_USE_TSAN
void* tsan_prev_fiber = co->tsan_prev_fiber;
co->tsan_prev_fiber = NULL;
__tsan_switch_to_fiber(tsan_prev_fiber, 0);
#endif
}
static void _mco_jumpin(mco_coro* co);
static void _mco_jumpout(mco_coro* co);
static MCO_NO_INLINE void _mco_main(mco_coro* co) {
co->func(co); /* Run the coroutine function. */
co->state = MCO_DEAD; /* Coroutine finished successfully, set state to dead. */
_mco_jumpout(co); /* Jump back to the old context .*/
}
/* ---------------------------------------------------------------------------------------------- */
#if defined(MCO_USE_UCONTEXT) || defined(MCO_USE_ASM)
/*
Some of the following assembly code is taken from LuaCoco by Mike Pall.
See https://coco.luajit.org/index.html
MIT license
Copyright (C) 2004-2016 Mike Pall. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef MCO_USE_ASM
#if defined(__x86_64__) || defined(_M_X64)
#ifdef _WIN32
typedef struct _mco_ctxbuf {
void *rip, *rsp, *rbp, *rbx, *r12, *r13, *r14, *r15, *rdi, *rsi;
void* xmm[20]; /* xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 */
void* fiber_storage;
void* dealloc_stack;
void* stack_limit;
void* stack_base;
} _mco_ctxbuf;
#if defined(__GNUC__)
#define _MCO_ASM_BLOB __attribute__((section(".text")))
#elif defined(_MSC_VER)
#define _MCO_ASM_BLOB __declspec(allocate(".text"))
#pragma section(".text")
#endif
_MCO_ASM_BLOB static unsigned char _mco_wrap_main_code[] = {
0x4c, 0x89, 0xe9, /* mov %r13,%rcx */
0x41, 0xff, 0xe4, /* jmpq *%r12 */
0xc3, /* retq */
0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90 /* nop */
};
_MCO_ASM_BLOB static unsigned char _mco_switch_code[] = {
0x48, 0x8d, 0x05, 0x3e, 0x01, 0x00, 0x00, /* lea 0x13e(%rip),%rax */
0x48, 0x89, 0x01, /* mov %rax,(%rcx) */
0x48, 0x89, 0x61, 0x08, /* mov %rsp,0x8(%rcx) */
0x48, 0x89, 0x69, 0x10, /* mov %rbp,0x10(%rcx) */
0x48, 0x89, 0x59, 0x18, /* mov %rbx,0x18(%rcx) */
0x4c, 0x89, 0x61, 0x20, /* mov %r12,0x20(%rcx) */
0x4c, 0x89, 0x69, 0x28, /* mov %r13,0x28(%rcx) */
0x4c, 0x89, 0x71, 0x30, /* mov %r14,0x30(%rcx) */
0x4c, 0x89, 0x79, 0x38, /* mov %r15,0x38(%rcx) */
0x48, 0x89, 0x79, 0x40, /* mov %rdi,0x40(%rcx) */
0x48, 0x89, 0x71, 0x48, /* mov %rsi,0x48(%rcx) */
0x0f, 0x11, 0x71, 0x50, /* movups %xmm6,0x50(%rcx) */
0x0f, 0x11, 0x79, 0x60, /* movups %xmm7,0x60(%rcx) */
0x44, 0x0f, 0x11, 0x41, 0x70, /* movups %xmm8,0x70(%rcx) */
0x44, 0x0f, 0x11, 0x89, 0x80, 0x00, 0x00, 0x00, /* movups %xmm9,0x80(%rcx) */
0x44, 0x0f, 0x11, 0x91, 0x90, 0x00, 0x00, 0x00, /* movups %xmm10,0x90(%rcx) */
0x44, 0x0f, 0x11, 0x99, 0xa0, 0x00, 0x00, 0x00, /* movups %xmm11,0xa0(%rcx) */
0x44, 0x0f, 0x11, 0xa1, 0xb0, 0x00, 0x00, 0x00, /* movups %xmm12,0xb0(%rcx) */
0x44, 0x0f, 0x11, 0xa9, 0xc0, 0x00, 0x00, 0x00, /* movups %xmm13,0xc0(%rcx) */
0x44, 0x0f, 0x11, 0xb1, 0xd0, 0x00, 0x00, 0x00, /* movups %xmm14,0xd0(%rcx) */
0x44, 0x0f, 0x11, 0xb9, 0xe0, 0x00, 0x00, 0x00, /* movups %xmm15,0xe0(%rcx) */
0x65, 0x4c, 0x8b, 0x14, 0x25, 0x30, 0x00, 0x00, 0x00, /* mov %gs:0x30,%r10 */
0x49, 0x8b, 0x42, 0x20, /* mov 0x20(%r10),%rax */
0x48, 0x89, 0x81, 0xf0, 0x00, 0x00, 0x00, /* mov %rax,0xf0(%rcx) */
0x49, 0x8b, 0x82, 0x78, 0x14, 0x00, 0x00, /* mov 0x1478(%r10),%rax */
0x48, 0x89, 0x81, 0xf8, 0x00, 0x00, 0x00, /* mov %rax,0xf8(%rcx) */
0x49, 0x8b, 0x42, 0x10, /* mov 0x10(%r10),%rax */
0x48, 0x89, 0x81, 0x00, 0x01, 0x00, 0x00, /* mov %rax,0x100(%rcx) */
0x49, 0x8b, 0x42, 0x08, /* mov 0x8(%r10),%rax */
0x48, 0x89, 0x81, 0x08, 0x01, 0x00, 0x00, /* mov %rax,0x108(%rcx) */
0x48, 0x8b, 0x82, 0x08, 0x01, 0x00, 0x00, /* mov 0x108(%rdx),%rax */
0x49, 0x89, 0x42, 0x08, /* mov %rax,0x8(%r10) */
0x48, 0x8b, 0x82, 0x00, 0x01, 0x00, 0x00, /* mov 0x100(%rdx),%rax */
0x49, 0x89, 0x42, 0x10, /* mov %rax,0x10(%r10) */
0x48, 0x8b, 0x82, 0xf8, 0x00, 0x00, 0x00, /* mov 0xf8(%rdx),%rax */
0x49, 0x89, 0x82, 0x78, 0x14, 0x00, 0x00, /* mov %rax,0x1478(%r10) */
0x48, 0x8b, 0x82, 0xf0, 0x00, 0x00, 0x00, /* mov 0xf0(%rdx),%rax */
0x49, 0x89, 0x42, 0x20, /* mov %rax,0x20(%r10) */
0x44, 0x0f, 0x10, 0xba, 0xe0, 0x00, 0x00, 0x00, /* movups 0xe0(%rdx),%xmm15 */
0x44, 0x0f, 0x10, 0xb2, 0xd0, 0x00, 0x00, 0x00, /* movups 0xd0(%rdx),%xmm14 */
0x44, 0x0f, 0x10, 0xaa, 0xc0, 0x00, 0x00, 0x00, /* movups 0xc0(%rdx),%xmm13 */
0x44, 0x0f, 0x10, 0xa2, 0xb0, 0x00, 0x00, 0x00, /* movups 0xb0(%rdx),%xmm12 */
0x44, 0x0f, 0x10, 0x9a, 0xa0, 0x00, 0x00, 0x00, /* movups 0xa0(%rdx),%xmm11 */
0x44, 0x0f, 0x10, 0x92, 0x90, 0x00, 0x00, 0x00, /* movups 0x90(%rdx),%xmm10 */
0x44, 0x0f, 0x10, 0x8a, 0x80, 0x00, 0x00, 0x00, /* movups 0x80(%rdx),%xmm9 */
0x44, 0x0f, 0x10, 0x42, 0x70, /* movups 0x70(%rdx),%xmm8 */
0x0f, 0x10, 0x7a, 0x60, /* movups 0x60(%rdx),%xmm7 */
0x0f, 0x10, 0x72, 0x50, /* movups 0x50(%rdx),%xmm6 */
0x48, 0x8b, 0x72, 0x48, /* mov 0x48(%rdx),%rsi */
0x48, 0x8b, 0x7a, 0x40, /* mov 0x40(%rdx),%rdi */
0x4c, 0x8b, 0x7a, 0x38, /* mov 0x38(%rdx),%r15 */
0x4c, 0x8b, 0x72, 0x30, /* mov 0x30(%rdx),%r14 */
0x4c, 0x8b, 0x6a, 0x28, /* mov 0x28(%rdx),%r13 */
0x4c, 0x8b, 0x62, 0x20, /* mov 0x20(%rdx),%r12 */
0x48, 0x8b, 0x5a, 0x18, /* mov 0x18(%rdx),%rbx */
0x48, 0x8b, 0x6a, 0x10, /* mov 0x10(%rdx),%rbp */
0x48, 0x8b, 0x62, 0x08, /* mov 0x8(%rdx),%rsp */
0xff, 0x22, /* jmpq *(%rdx) */
0xc3, /* retq */
0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, /* nop */
0x90, 0x90, /* nop */
};
void (*_mco_wrap_main)(void) = (void(*)(void))(void*)_mco_wrap_main_code;
void (*_mco_switch)(_mco_ctxbuf* from, _mco_ctxbuf* to) = (void(*)(_mco_ctxbuf* from, _mco_ctxbuf* to))(void*)_mco_switch_code;
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
stack_size = stack_size - 32; /* Reserve 32 bytes for the shadow space. */
void** stack_high_ptr = (void**)((size_t)stack_base + stack_size - sizeof(size_t));
stack_high_ptr[0] = (void*)(0xdeaddeaddeaddead); /* Dummy return address. */
ctx->rip = (void*)(_mco_wrap_main);
ctx->rsp = (void*)(stack_high_ptr);
ctx->r12 = (void*)(_mco_main);
ctx->r13 = (void*)(co);
void* stack_top = (void*)((size_t)stack_base + stack_size);
ctx->stack_base = stack_top;
ctx->stack_limit = stack_base;
ctx->dealloc_stack = stack_base;
return MCO_SUCCESS;
}
#else /* not _WIN32 */
typedef struct _mco_ctxbuf {
void *rip, *rsp, *rbp, *rbx, *r12, *r13, *r14, *r15;
} _mco_ctxbuf;
void _mco_wrap_main(void);
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
__asm__(
".text\n"
#ifdef __MACH__ /* Mac OS X assembler */
".globl __mco_wrap_main\n"
"__mco_wrap_main:\n"
#else /* Linux assembler */
".globl _mco_wrap_main\n"
".type _mco_wrap_main @function\n"
".hidden _mco_wrap_main\n"
"_mco_wrap_main:\n"
#endif
" movq %r13, %rdi\n"
" jmpq *%r12\n"
#ifndef __MACH__
".size _mco_wrap_main, .-_mco_wrap_main\n"
#endif
);
__asm__(
".text\n"
#ifdef __MACH__ /* Mac OS assembler */
".globl __mco_switch\n"
"__mco_switch:\n"
#else /* Linux assembler */
".globl _mco_switch\n"
".type _mco_switch @function\n"
".hidden _mco_switch\n"
"_mco_switch:\n"
#endif
" leaq 0x3d(%rip), %rax\n"
" movq %rax, (%rdi)\n"
" movq %rsp, 8(%rdi)\n"
" movq %rbp, 16(%rdi)\n"
" movq %rbx, 24(%rdi)\n"
" movq %r12, 32(%rdi)\n"
" movq %r13, 40(%rdi)\n"
" movq %r14, 48(%rdi)\n"
" movq %r15, 56(%rdi)\n"
" movq 56(%rsi), %r15\n"
" movq 48(%rsi), %r14\n"
" movq 40(%rsi), %r13\n"
" movq 32(%rsi), %r12\n"
" movq 24(%rsi), %rbx\n"
" movq 16(%rsi), %rbp\n"
" movq 8(%rsi), %rsp\n"
" jmpq *(%rsi)\n"
" ret\n"
#ifndef __MACH__
".size _mco_switch, .-_mco_switch\n"
#endif
);
static mco_result _mco_makectx(mco_coro* co, _mco_ctxbuf* ctx, void* stack_base, size_t stack_size) {
stack_size = stack_size - 128; /* Reserve 128 bytes for the Red Zone space (System V AMD64 ABI). */
void** stack_high_ptr = (void**)((size_t)stack_base + stack_size - sizeof(size_t));
stack_high_ptr[0] = (void*)(0xdeaddeaddeaddead); /* Dummy return address. */
ctx->rip = (void*)(_mco_wrap_main);
ctx->rsp = (void*)(stack_high_ptr);
ctx->r12 = (void*)(_mco_main);
ctx->r13 = (void*)(co);
return MCO_SUCCESS;
}
#endif /* not _WIN32 */
#elif defined(__riscv)
typedef struct _mco_ctxbuf {
void* s[12]; /* s0-s11 */
void* ra;
void* pc;
void* sp;
#ifdef __riscv_flen
#if __riscv_flen == 64
double fs[12]; /* fs0-fs11 */
#elif __riscv_flen == 32
float fs[12]; /* fs0-fs11 */
#endif
#endif /* __riscv_flen */
} _mco_ctxbuf;
void _mco_wrap_main(void);
int _mco_switch(_mco_ctxbuf* from, _mco_ctxbuf* to);
__asm__(
".text\n"
".globl _mco_wrap_main\n"
".type _mco_wrap_main @function\n"
".hidden _mco_wrap_main\n"
"_mco_wrap_main:\n"
" mv a0, s0\n"
" jr s1\n"
".size _mco_wrap_main, .-_mco_wrap_main\n"
);
__asm__(
".text\n"
".globl _mco_switch\n"
".type _mco_switch @function\n"
".hidden _mco_switch\n"
"_mco_switch:\n"
#if __riscv_xlen == 64
" sd s0, 0x00(a0)\n"
" sd s1, 0x08(a0)\n"
" sd s2, 0x10(a0)\n"
" sd s3, 0x18(a0)\n"
" sd s4, 0x20(a0)\n"
" sd s5, 0x28(a0)\n"
" sd s6, 0x30(a0)\n"
" sd s7, 0x38(a0)\n"
" sd s8, 0x40(a0)\n"
" sd s9, 0x48(a0)\n"
" sd s10, 0x50(a0)\n"
" sd s11, 0x58(a0)\n"
" sd ra, 0x60(a0)\n"
" sd ra, 0x68(a0)\n" /* pc */
" sd sp, 0x70(a0)\n"
#ifdef __riscv_flen
#if __riscv_flen == 64
" fsd fs0, 0x78(a0)\n"
" fsd fs1, 0x80(a0)\n"
" fsd fs2, 0x88(a0)\n"
" fsd fs3, 0x90(a0)\n"
" fsd fs4, 0x98(a0)\n"
" fsd fs5, 0xa0(a0)\n"
" fsd fs6, 0xa8(a0)\n"
" fsd fs7, 0xb0(a0)\n"
" fsd fs8, 0xb8(a0)\n"
" fsd fs9, 0xc0(a0)\n"
" fsd fs10, 0xc8(a0)\n"
" fsd fs11, 0xd0(a0)\n"
" fld fs0, 0x78(a1)\n"
" fld fs1, 0x80(a1)\n"
" fld fs2, 0x88(a1)\n"
" fld fs3, 0x90(a1)\n"
" fld fs4, 0x98(a1)\n"
" fld fs5, 0xa0(a1)\n"
" fld fs6, 0xa8(a1)\n"
" fld fs7, 0xb0(a1)\n"
" fld fs8, 0xb8(a1)\n"
" fld fs9, 0xc0(a1)\n"
" fld fs10, 0xc8(a1)\n"
" fld fs11, 0xd0(a1)\n"
#else
#error "Unsupported RISC-V FLEN"
#endif
#endif /* __riscv_flen */
" ld s0, 0x00(a1)\n"
" ld s1, 0x08(a1)\n"
" ld s2, 0x10(a1)\n"
" ld s3, 0x18(a1)\n"
" ld s4, 0x20(a1)\n"
" ld s5, 0x28(a1)\n"
" ld s6, 0x30(a1)\n"
" ld s7, 0x38(a1)\n"
" ld s8, 0x40(a1)\n"
" ld s9, 0x48(a1)\n"
" ld s10, 0x50(a1)\n"
" ld s11, 0x58(a1)\n"
" ld ra, 0x60(a1)\n"
" ld a2, 0x68(a1)\n" /* pc */
" ld sp, 0x70(a1)\n"
" jr a2\n"
#elif __riscv_xlen == 32
" sw s0, 0x00(a0)\n"
" sw s1, 0x04(a0)\n"
" sw s2, 0x08(a0)\n"
" sw s3, 0x0c(a0)\n"
" sw s4, 0x10(a0)\n"
" sw s5, 0x14(a0)\n"
" sw s6, 0x18(a0)\n"
" sw s7, 0x1c(a0)\n"
" sw s8, 0x20(a0)\n"
" sw s9, 0x24(a0)\n"
" sw s10, 0x28(a0)\n"
" sw s11, 0x2c(a0)\n"
" sw ra, 0x30(a0)\n"
" sw ra, 0x34(a0)\n" /* pc */
" sw sp, 0x38(a0)\n"
#ifdef __riscv_flen
#if __riscv_flen == 64
" fsd fs0, 0x3c(a0)\n"
" fsd fs1, 0x44(a0)\n"
" fsd fs2, 0x4c(a0)\n"
" fsd fs3, 0x54(a0)\n"
" fsd fs4, 0x5c(a0)\n"
" fsd fs5, 0x64(a0)\n"
" fsd fs6, 0x6c(a0)\n"
" fsd fs7, 0x74(a0)\n"
" fsd fs8, 0x7c(a0)\n"
" fsd fs9, 0x84(a0)\n"
" fsd fs10, 0x8c(a0)\n"
" fsd fs11, 0x94(a0)\n"
" fld fs0, 0x3c(a1)\n"
" fld fs1, 0x44(a1)\n"
" fld fs2, 0x4c(a1)\n"
" fld fs3, 0x54(a1)\n"
" fld fs4, 0x5c(a1)\n"
" fld fs5, 0x64(a1)\n"
" fld fs6, 0x6c(a1)\n"
" fld fs7, 0x74(a1)\n"
" fld fs8, 0x7c(a1)\n"
" fld fs9, 0x84(a1)\n"
" fld fs10, 0x8c(a1)\n"
" fld fs11, 0x94(a1)\n"
#elif __riscv_flen == 32
" fsw fs0, 0x3c(a0)\n"
" fsw fs1, 0x40(a0)\n"
" fsw fs2, 0x44(a0)\n"
" fsw fs3, 0x48(a0)\n"
" fsw fs4, 0x4c(a0)\n"
" fsw fs5, 0x50(a0)\n"
" fsw fs6, 0x54(a0)\n"
" fsw fs7, 0x58(a0)\n"
" fsw fs8, 0x5c(a0)\n"
" fsw fs9, 0x60(a0)\n"
" fsw fs10, 0x64(a0)\n"
" fsw fs11, 0x68(a0)\n"
" flw fs0, 0x3c(a1)\n"
" flw fs1, 0x40(a1)\n"
" flw fs2, 0x44(a1)\n"
" flw fs3, 0x48(a1)\n"