This repository has been archived by the owner on Jan 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject.vhd
210 lines (189 loc) · 6.98 KB
/
project.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
----------------------------------------------------------------------------------
-- Prova Finale (Progetto di Reti Logiche)
-- Prof. Fabio Salice - Anno 2022/2023
--
-- Edoardo Gennaretti (Codice Persona 10743751 Matricola 955326)
-- Samuele Pietro Galli (Codice Persona 10710025 Matricola 955426)
----------------------------------------------------------------------------------
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY project_reti_logiche IS
PORT (
i_clk : IN STD_LOGIC;
i_rst : IN STD_LOGIC;
i_start : IN STD_LOGIC;
i_w : IN STD_LOGIC;
o_z0 : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
o_z1 : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
o_z2 : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
o_z3 : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
o_done : OUT STD_LOGIC;
o_mem_addr : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
i_mem_data : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
o_mem_we : OUT STD_LOGIC;
o_mem_en : OUT STD_LOGIC
);
END project_reti_logiche;
ARCHITECTURE Behavioral OF project_reti_logiche IS
SIGNAL reg_selector : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00";
SIGNAL reg_address : STD_LOGIC_VECTOR (15 DOWNTO 0) := X"0000";
SIGNAL reg_data_0 : STD_LOGIC_VECTOR (7 DOWNTO 0) := X"00";
SIGNAL reg_data_1 : STD_LOGIC_VECTOR (7 DOWNTO 0) := X"00";
SIGNAL reg_data_2 : STD_LOGIC_VECTOR (7 DOWNTO 0) := X"00";
SIGNAL reg_data_3 : STD_LOGIC_VECTOR (7 DOWNTO 0) := X"00";
SIGNAL shift_add : STD_LOGIC := '0';
SIGNAL reset_add : STD_LOGIC := '0';
SIGNAL enable_decoder : STD_LOGIC := '0';
SIGNAL reg_selector_lsb_load : STD_LOGIC := '0';
SIGNAL reg_selector_msb_load : STD_LOGIC := '0';
SIGNAL finished : STD_LOGIC := '0';
SIGNAL right_add : STD_LOGIC := '0';
SIGNAL overflow : STD_LOGIC := '0';
TYPE S IS (SEL_MSB, SEL_LSB, SHIFT, RIGHT, MEM, DONE, WRITE);
SIGNAL cur_state, next_state : S;
BEGIN
--elaborating the lsb bit of the selector
PROCESS (i_clk, i_rst, reg_selector_lsb_load)
BEGIN
IF (i_rst = '1') THEN
reg_selector(0) <= '0';
ELSIF rising_edge(i_clk) AND reg_selector_lsb_load = '1' THEN
reg_selector(0) <= i_w;
END IF;
END PROCESS;
--elaborating the msb bit of the selector
PROCESS (i_clk, i_rst, reg_selector_msb_load)
BEGIN
IF (i_rst = '1') THEN
reg_selector(1) <= '0';
ELSIF rising_edge(i_clk) AND reg_selector_msb_load = '1' THEN
reg_selector(1) <= i_w;
END IF;
END PROCESS;
--elaborating the RAM address
PROCESS (i_clk, i_rst, reset_add, shift_add, right_add)
BEGIN
IF (i_rst = '1' OR reset_add = '1') THEN
overflow <= '0';
reg_address <= X"0000";
ELSIF rising_edge(i_clk) THEN
IF (shift_add = '1') THEN
overflow <= reg_address(15);
reg_address <= reg_address(14 DOWNTO 0) & i_w;
ELSIF right_add = '1' THEN
reg_address <= overflow & reg_address(15 DOWNTO 1);
END IF;
END IF;
END PROCESS;
--multiplexer for visualizing the saved data as soon the elaboration in completed
WITH finished SELECT
o_z0 <= "00000000" WHEN '0',
reg_data_0 WHEN '1',
"XXXXXXXX" WHEN OTHERS;
WITH finished SELECT
o_z1 <= "00000000" WHEN '0',
reg_data_1 WHEN '1',
"XXXXXXXX" WHEN OTHERS;
WITH finished SELECT
o_z2 <= "00000000" WHEN '0',
reg_data_2 WHEN '1',
"XXXXXXXX" WHEN OTHERS;
WITH finished SELECT
o_z3 <= "00000000" WHEN '0',
reg_data_3 WHEN '1',
"XXXXXXXX" WHEN OTHERS;
o_mem_addr <= reg_address;
--save the data read from the RAM in the right register
PROCESS (i_clk, i_rst, enable_decoder, reg_selector)
BEGIN
IF (i_rst = '1') THEN
reg_data_0 <= X"00";
reg_data_1 <= X"00";
reg_data_2 <= X"00";
reg_data_3 <= X"00";
ELSIF (rising_edge(i_clk) AND enable_decoder = '1') THEN
IF (reg_selector = "00") THEN
reg_data_0 <= i_mem_data;
ELSIF reg_selector = "01" THEN
reg_data_1 <= i_mem_data;
ELSIF reg_selector = "10" THEN
reg_data_2 <= i_mem_data;
ELSIF reg_selector = "11" THEN
reg_data_3 <= i_mem_data;
END IF;
END IF;
END PROCESS;
-----------
-- FSM --
-----------
--reset of the fsm
PROCESS (i_clk, i_rst)
BEGIN
IF (i_rst = '1') THEN
cur_state <= SEL_MSB;
ELSIF rising_edge(i_clk) THEN
cur_state <= next_state;
END IF;
END PROCESS;
--changes of between states of the fsm
PROCESS (cur_state, i_start)
BEGIN
next_state <= cur_state; --if not specified the state doesn't change
CASE cur_state IS
WHEN SEL_MSB =>
IF i_start = '1' THEN
next_state <= SEL_LSB;
END IF;
WHEN SEL_LSB =>
next_state <= SHIFT;
WHEN SHIFT =>
IF i_start = '0' THEN
next_state <= RIGHT;
END IF;
WHEN RIGHT =>
next_state <= MEM;
WHEN MEM =>
next_state <= DONE;
WHEN DONE =>
next_state <= WRITE;
WHEN WRITE =>
next_state <= SEL_MSB;
END CASE;
END PROCESS;
--signals for each state of the fsm
PROCESS (cur_state)
BEGIN
--signals not specified are setted as 0
shift_add <= '0';
enable_decoder <= '0';
reg_selector_lsb_load <= '0';
reg_selector_msb_load <= '0';
finished <= '0';
o_mem_en <= '0';
o_mem_we <= '0';
o_done <= '0';
right_add <= '0';
reset_add <= '0';
CASE cur_state IS
WHEN SEL_MSB =>
reset_add <= '1';
reg_selector_msb_load <= '1';
WHEN SEL_LSB =>
reg_selector_lsb_load <= '1';
WHEN SHIFT =>
shift_add <= '1';
WHEN RIGHT =>
right_add <= '1';
WHEN MEM =>
o_mem_en <= '1';
WHEN DONE =>
enable_decoder <= '1';
finished <= '1';
WHEN WRITE =>
finished <= '1';
o_done <= '1';
reset_add <= '1';
END CASE;
END PROCESS;
END Behavioral;