-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwac2wavcmd.c
538 lines (495 loc) · 18.6 KB
/
wac2wavcmd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
//////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2014-2017 Wildlife Acoustics, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// Wildlife Acoustics, Inc.
// 3 Mill and Main Place, Suite 210
// Maynard, MA 01754-2657
// +1 978 369 5225
// www.wildlifeacoustics.com
//
//////////////////////////////////////////////////////////////////////////////
//
// wac2wavcmd.c VERSION 1.0
//
// This code will take an untriggered WAC file (version 4 or earlier) as
// standard input and produce an uncompressed WAV file as standard output.
//
// This code serves as an example of how to decode the Wildlife Acoustics
// proprietary audio compression format known as "WAC".
//
// See comments to learn how GPS data, triggers, and recording tags may be
// interleaved in the data stream.
//
// The comments below are intended to provide some description of how the
// WAC format is implemented, but you should refer to the code as authoratative.
//
// A WAC file has the following format. Note multi-byte values are
// little-endian.
//
// 1. WAC HEADER (24 bytes)
// 0x00 - 0x03 = "WAac" - identifies this as a WAC file
// 0x04 = Version number (<= 4)
// 0x05 = Channel count (1 for mono, 2 for stereo)
// 0x06 - 0x07 = Frame size = # samples per channel per frame
// 0x08 - 0x09 = Block size = # frames per block
// 0x0a - 0x0b = Flags
// 0x0f = mask of "lossy bits". For "WAC0", this is 0.
// For "WAC1", this is 1, and so on, representing
// increasing levels of compression as the number
// of discarded least-significant bits. WAC0 is
// lossless compression, WAC1 is equivalent to
// 15-bit dynamic range, WAC2 is equivalent to
// 14-bit dynamic range, and so on.
// 0x10 = Triggered WAC file e.g. one or both channels
// have triggers. What this means is that highly
// compressed zero-value frames may be inserted
// in the data stream representing untriggered
// time between triggered recordings. Software
// capable of handling triggers can break a file
// into pieces discarding these zero-value frames.
// Note: This example code does not support
// this, but look in the code for "ZERO FRAME"
// to see where this would be used.
// 0x20 = GPS data present - GPS data is interleaved with
// data in block headers.
// 0x40 = TAG data present - TAG data is interleaved with
// data in block headers. The TAG corresponds to
// an EM3/EM3+ button press to tag a recording.
// 0x0c - 0x0f = Sample rate (samples per second)
// 0x10 - 0x13 = Sample count (number of samples in WAC file per channel)
// 0x14 - 0x15 = Seek size (number of blocks per seek table entry)
// 0x16 - 0x17 = Seek entries (size of seek table in 32-bit words)
//
// 2. SEEK TABLE
// The Seek Table contains (Seek entries) number of 4-byte (32-bit)
// values representing the absolute offset into the WAC file corresponding
// to each (Seek size) blocks. The offset is measured in 16-bit words so
// you would double these values to convert to a byte offset into the file.
// The intention of the seek table is to make it easier to jump to a position
// in the WAC file without needing to decompress all the data before that
// position. This code example does not use the seek table so we simply
// skip over it.
//
// 3. BLOCKS OF FRAMES OF SAMPLES
// Samples are grouped into frames (according to the frame size), and
// frames are organized into blocks (according to the block size).
// Additionally, blocks are organized into seek table entries as described
// above according to the seek size.
//
// Each block is aligned to a 16-bit boundary and consists of a block
// header followed by block size frames. The format of the block header is
// as follows:
//
// 0x00 - 0x03 = 0x00018000 = unique block header pattern
// 0x04 - 0x07 = block index (starting with zero and incrementing by one
// for each subsequent block used to keep things synchronized
// and detect file corruption. This is also convenient for
// seeking to a particular block as the patterns here will
// not occur in the data stream.
//
// Following the block header are a series of variable-length bit-fields
// which do not necessarily line up on byte boundaries. Refer to the
// ReadBits() function for specifics relating to the encoding.
//
// If (flags & 0x20), then GPS data is present in every seek size blocks
// beginning with the first block at index zero. The GPS data is encoded as
// 25-bits of signed latitude and 26-bits of signed longitude information.
// (using 2's complement notation). The latitude and longitude values in
// degrees can be determined by dividing these signed quantities by 100,000
// with positive values corresponding to North latitude and West longitude.
//
// If (flags & 0x40), then tag data is present in every block and is
// represented by 4-bits. For tagged recordings (e.g. from an EM3), the
// tag values 1-4 correspond to the buttons 'A' through 'D', and a value 0
// indicates that no tag is present. While the tag button is pressed,
// blocks will be written with the corresponding tag.
//
// Note that the GPS and TAG values are not implemented in this code and are
// simply skipped, but please see the comments in the code for more
// information.
//
// Following the block header and optional GPS or tag data are block size
// frames of frame size samples for each channel. For multi-channel
// recordings, samples are interleaved.
//
// Compression uses Golumb coding of the deltas between successive samples.
// The number of bits used to represent the remainder is variable and
// optimized for each frame and for each channel. The quotient is
// represented by alternating 1/0 bits ahead of the remainder.
//
// The frame begins with a 4-bit value for each channel indicating the
// number of bits used to represent the remainder. Note that a zero value
// indicates that the frame contains no content e.g. representing the
// space inbetween triggered recordings.
//
// What follows are Golumb-encoded representations of deltas of interleaved
// (by channel) samples. Details can be found in FrameDecode().
//
// NOTE: We have not yet added Wildlife Acoustics metadata to the WAC
// format and may do so in the future, quite likely by appending a
// "Wamd" chunk at the end of the file.
//
// NOTE: This code compiles on Linux and should be easy to port to other
// applications. Little-endian is assumed.
//
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct WacState_s
{
int version; // WAC file version number
int flags; // WAC flags
int framesize; // samples per channel per frame
int blocksize; // frames per block
int seeksize; // blocks per seek-table entry
int seekentries; // number of seek-table entries
int channelcount;// number of channels
int samplerate; // sample rate
unsigned long samplecount; // number of samples in file per channel
FILE *filetbl[2]; // input and output file descriptors
int frameindex; // current frame index
int filebit_index; // index to current bit in word (0-15)
unsigned short bitbuffer; // remaining bits in bit buffer
} WacState;
// Forward declarations
int ReadBits(WacState *WP, int _bits);
unsigned short ReadWord(WacState *WP);
void FrameDecode(WacState *WP);
// Macros for read/write
#define READ(WP, buf, len) fread(buf, 1, len, (WP)->filetbl[0])
#define WRITE(WP, buf, len) fwrite(buf, 1, len, (WP)->filetbl[1])
// Simply take stdin to stdout
int main(int argc, char **argv)
{
int i;
unsigned ul;
size_t sz;
unsigned char hdr[24];
unsigned char cc[4];
// Copyright
fprintf(stderr, "\r\nwac2wavcmd 1.0 Copyright (C) 2014 Wildlife Acoustics, Inc.\r\n\r\n"
"This program comes with ABSOLUTELY NO WARRANTY;\r\n"
"This is free software, and you are welcome to redistribute it.\r\n\r\n"
"Usage: reads stdin for .wac file and writes .wav file to stdout\r\n\r\n"
"Progress: "
);
// Initialize WAC state
WacState W;
memset(&W, 0, sizeof(W));
// For this simple example, we'll just read WAC from stdin and write WAV
// to stdout...
W.filetbl[0] = stdin;
W.filetbl[1] = stdout;
// Parse WAC header and validate supported formats
if ((sz = READ(&W, hdr, 24)) != 24)
{
fprintf(stderr, "%s: Unexpected eof\n", argv[0]);
exit(1);
}
// Verify "magic" header
if ( hdr[0] != 'W'
|| hdr[1] != 'A'
|| hdr[2] != 'a'
|| hdr[3] != 'c'
)
{
fprintf(stderr, "%s: Input not a WAC file\n", argv[0]);
exit(1);
}
// Check version
W.version = hdr[4];
if (W.version > 4)
{
fprintf(stderr, "%s: Input version %d not supported\n", argv[0], W.version);
exit(1);
}
// Read channel count and frame size
W.channelcount = hdr[5];
W.framesize = hdr[6] | (hdr[7] << 8);
// All Wildlife Acoustics WAC files have 512-byte (256-sample mono or
// 128 sample stereo) frames.
if (W.channelcount * W.framesize != 256)
{
fprintf(stderr, "%s: Unsupported block size %d\n", argv[0],W.channelcount*W.framesize);
exit(1);
}
// All Wildlife Acoustics WAC files have 1 or 2 channels
if (W.channelcount > 2)
{
fprintf(stderr, "%s: Unsupported channel count %d\n", argv[0], W.channelcount);
exit(1);
}
// Read flags
W.flags = hdr[10] | (hdr[11] << 8);
// For this example, we do not support triggered WAC files because we are
// simply streaming to a single WAV file. See FrameDecode() logic below
// about triggered WAC mode. If any special "zero frames" are present, this
// bit will be set. For non-triggered recordings, this bit will be clear.
if (W.flags & 0x10)
{
fprintf(stderr, "%s: Triggered WAC files not supported\n", argv[0]);
exit(1);
}
// Parse additional fields from the WAC header
W.blocksize = hdr[8] | (hdr[9] << 8);
W.samplerate = hdr[12] | (hdr[13] << 8) | (hdr[14] << 16) | (hdr[15] << 24);
W.samplecount = hdr[16] | (hdr[17] << 8) | (hdr[18] << 16) | (hdr[19] << 24);
W.seeksize = hdr[20] | (hdr[21] << 8);
W.seekentries = hdr[22] | (hdr[23] << 8);
// Skip over the seek table (not used in this example)
for (i = 0; i < W.seekentries; i++)
{
if ((sz = READ(&W, hdr, 4)) != 4)
{
fprintf(stderr, "%s: Unexpected EOF\n", argv[0]);
exit(1);
}
}
// Write WAV file header from WAC header information
WRITE(&W, "RIFF", 4);
ul = 4 // "WAVE
+ 8 + 16 // fmt chunk
+ 8 // data chunk
+ 2 * W.samplecount * W.channelcount;
cc[3] = (ul >> 24) & 0xff;
cc[2] = (ul >> 16) & 0xff;
cc[1] = (ul >> 8) & 0xff;
cc[0] = (ul ) & 0xff;
WRITE(&W, cc, 4);
WRITE(&W, "WAVE", 4);
WRITE(&W, "fmt ", 4);
ul = 16;
cc[3] = (ul >> 24) & 0xff;
cc[2] = (ul >> 16) & 0xff;
cc[1] = (ul >> 8) & 0xff;
cc[0] = (ul ) & 0xff;
WRITE(&W, cc, 4);
cc[0] = 1; // tag
cc[1] = 0;
WRITE(&W, cc, 2);
cc[0] = W.channelcount;
WRITE(&W, cc, 2);
ul = W.samplerate;
cc[3] = (ul >> 24) & 0xff;
cc[2] = (ul >> 16) & 0xff;
cc[1] = (ul >> 8) & 0xff;
cc[0] = (ul ) & 0xff;
WRITE(&W, cc, 4);
ul *= W.channelcount * 2; // bytes per second
cc[3] = (ul >> 24) & 0xff;
cc[2] = (ul >> 16) & 0xff;
cc[1] = (ul >> 8) & 0xff;
cc[0] = (ul ) & 0xff;
WRITE(&W, cc, 4);
cc[0] = 2*W.channelcount; // bytes per sample
cc[1] = 0;
WRITE(&W, cc, 2);
cc[0] = 16; // bits per sample
WRITE(&W, cc, 2);
WRITE(&W, "data", 4);
ul = W.samplecount * W.channelcount * 2;
cc[3] = (ul >> 24) & 0xff;
cc[2] = (ul >> 16) & 0xff;
cc[1] = (ul >> 8) & 0xff;
cc[0] = (ul ) & 0xff;
WRITE(&W, cc, 4);
// Read frames of data and WRITE samples out
while (W.samplecount > 0)
{
FrameDecode(&W);
W.samplecount -= W.framesize;
}
// All done
fprintf(stderr, "\r\n");
exit(0);
}
// Read bits:
//
// This function reads the specified number of bits from the file (1-16) and
// returns the signed value.
//
// We buffer 16-bits at a time in bitbuffer and keep track of the current
// filebit_index number of bits remaining in the buffer.
//
int ReadBits(WacState *WP, int bits)
{
unsigned long x = 0;
// While we need bits...
while (bits > 0)
{
// If starting a new 16-bit word, read the next 16 bits
if (WP->filebit_index == 0)
{
READ(WP, &WP->bitbuffer, 2);
WP->filebit_index = 16;
}
// If all the bits we need are in the current word, extract the bits,
// update state, and break out of the loop.
if (bits < WP->filebit_index)
{
x <<= bits;
x |= WP->bitbuffer >> (16 - bits);
WP->bitbuffer <<= bits;
WP->filebit_index -= bits;
break;
}
else
{
// Otherwise extract the bits we have and continue (which will
// then load the next 16-bits into the bitbuffer
x <<= WP->filebit_index;
x |= WP->bitbuffer >> (16 - WP->filebit_index);
bits -= WP->filebit_index;
WP->filebit_index = 0;
}
}
return (int) x;
}
// ReadWord
//
// Skip to 16-bit boundary and read and return the next 16 bits.
//
unsigned short ReadWord(WacState *WP)
{
WP->filebit_index = 0;
return ReadBits(WP, 16);
}
// FrameDecode
//
// Decode the next frame and write interleaved 16-bit samples to output file
//
void FrameDecode(WacState *WP)
{
unsigned short s;
int i;
int ch;
unsigned short code;
short lastsample[2];
int g[2];
int lossybits = WP->flags & 0x0f;
// At start of block parse block header
if (0 == (WP->frameindex % WP->blocksize))
{
// Verify that the block header is valid and as expected
int block = WP->frameindex / WP->blocksize;
if ( ReadWord(WP) != 0x8000
|| ReadWord(WP) != 0x0001
|| ReadWord(WP) != (block & 0xffff)
|| ReadWord(WP) != ((block >> 16) & 0xffff)
)
{
fprintf(stderr, "Bad block header\n");
exit(1);
}
if (0 == WP->frameindex % 1024)
{
fprintf(stderr, "."); // progress...
}
// If GPS data present and the block number is modulo the blocks per
// seek table entry, then load the latitude and longitude.
if ((WP->flags & 0x20) && 0 == (block % WP->seeksize))
{
int lathi = ReadBits(WP,9);
int latlo = ReadBits(WP,16);
int lonhi = ReadBits(WP,10);
int lonlo = ReadBits(WP,16);
// For this example, we are not actually using the latitude and
// longitude. But these values are 100,000 times the latitude and
// longitude in degrees with positive sign indicating north latitude
// and west longitude. These can be derived as follows:
//
// float lat = ((lathi<<16)|latlo) / 100000.0;
// float lon = ((lonhi<<16)|lonlo) / 100000.0;
}
// If tag data present read it. For this example, we aren't using this
// data. But for EM3 recordings, for example, this tag value would
// be 1-4 corresponding to buttons A-D being depressed during this frame.
if (WP->flags & 0x40)
{
int tag = ReadBits(WP,4);
}
}
// Advance frame
WP->frameindex++;
// Read the per-channel Golumb remainder code size
for (ch = 0; ch < WP->channelcount; ch++)
{
lastsample[ch] = 0;
g[ch] = ReadBits(WP,4);
}
// Read samples for frame
for (i = 0; i < WP->framesize; i++)
{
// Interleave channels
for (ch = 0; ch < WP->channelcount; ch++)
{
int delta;
int stopbit;
// ZERO FRAME
// Special case: For triggered WAC files, the code size is set to
// zero to indicate a zero-value frame. This represents the
// space between triggered events in the WAC file. A trigger-aware
// parser would look for onset/offset of this condition to break up
// a WAC file into individual triggers. In this example, we are just
// filling the space with zero sample values. And we won't actually
// get to this code because the presence of these special zero-value
// frames also requires that the header flags has 0x10 set. In
// main() above, we exit with an error if this is the case.
if (g[ch] == 0)
{
s = 0;
WRITE(WP, &s, 2);
continue;
}
// Read the remainder code from the specified number of bits
code = ReadBits(WP,g[ch]);
// Read the quotient represented by alternating 1/0 pattern
// following the remainder code
stopbit = (code & 1) ^ 1;
while (stopbit != ReadBits(WP,1))
{
code += 1 << g[ch];
stopbit ^= 1;
}
// Adjust for sign
if (code & 1)
{
delta = -(code+1)/2;
}
else
{
delta = code/2;
}
// Compute sample value as delta from previous sample
delta += lastsample[ch];
lastsample[ch] = delta;
// Restore dropped least-significant bits used in higher levels
// of compression e.g. WAC1, WAC2, etc.
delta <<= lossybits;
// Write 16-bit sample to output file
s = delta;
WRITE(WP, &s, 2);
}
}
}