-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocess_nyt.py
454 lines (357 loc) · 13.6 KB
/
preprocess_nyt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
"""
Script from Paulus et al. (2017), for preprocessing NYT dataset.
Supplied by Romain Paulus. Code under his Copyright.
"""
import os
import sys
import tarfile
import re
import multiprocessing
import json
import logging
from glob import glob
from contextlib import closing
import xml.etree.ElementTree as ET
import requests
class Dataset(object):
"""
Generic dataset object that encapsulates a list of instances.
The dataset is analogous to a simplified table, whereby each cell can contain arbitrary data types.
Each row in the table is defined by a tuple.
The columns in the table are defined by `self.fields`.
The dataset object supports indexing, iterating, slicing (eg. for iterating over batches), shuffling, and
serialization/deserialization to/from JSONL.
Examples:
>>> Dataset(['Name', 'SSN']).add_example('A', 1)
Dataset(Name, SSN)
>>> Dataset(['Name', 'SSN']).add_examples([('A', 1), ('B', 2), ('C', 3)]).data
[('A', 1), ('B', 2), ('C', 3)]
>>> Dataset(['Name', 'SSN']).add_examples([('A', 1), ('B', 2), ('C', 3)])[1]
('B', 2)
>>> Dataset(['Name', 'SSN']).add_examples([('A', 1), ('B', 2), ('C', 3)])[1:]
[('B', 2), ('C', 3)]
>>> [e for e in Dataset(['Name', 'SSN']).add_examples([('A', 1), ('B', 2), ('C', 3)])]
[('A', 1), ('B', 2), ('C', 3)]
"""
def __init__(self, fields):
"""
Args:
fields: A tuple of fields in the dataset.
"""
assert isinstance(fields, tuple) or isinstance(fields, list)
self.fields = tuple(fields)
self.data = []
def add_example(self, *args, **kwargs):
"""
Adds a single example to the dataset.
Args:
*args: tuple arguments for the example, according to dataset order as indicated by `fields`.
**kwargs: keyword arguments for the example, according to dataset fields as indicated by `fields`.
Returns: the added example as a `tuple`
Examples:
>>> Dataset(['name', 'ssn']).add_example('Adam', 123).data
[('Adam', 123)]
>>> Dataset(['name', 'ssn']).add_example(name='Adam', ssn=123).data
[('Adam', 123)]
"""
if not kwargs:
tup = args
else:
tup = {}
for i, f in enumerate(self.fields):
if i < len(args):
tup[f] = args[i]
if f in kwargs:
tup[f] = kwargs[f]
tup = tuple(tup[f] for f in self.fields)
assert len(tup) == len(
self.fields
), "Expected {} fields, example only contains {}".format(
len(self.fields), len(tup)
)
self.data.append(tup)
return self
def add_examples(self, rows):
"""
Adds many examples to the dataset
Args:
rows: List of tuples to add to the dataset. Each tuple should be in `field` order.
Returns: the modified dataset
Examples:
>>> Dataset(['Name', 'SSN']).add_examples([('A', 1), ('B', 2), ('C', 3)]).data
[('A', 1), ('B', 2), ('C', 3)]
"""
assert isinstance(rows, list)
for r in rows:
assert isinstance(r, tuple)
self.add_example(*r)
return self
def __len__(self):
"""
Returns: number of examples in the dataset
"""
return len(self.data)
def __repr__(self):
return "{}({})".format(self.__class__.__name__, ", ".join(self.fields))
def __getitem__(self, item):
"""
Args:
item: An integer index or a slice (eg. 2, 1:, 1:5)
Returns: tuple(s) corresponding to the instance(s) at index/indices `item`.
"""
return self.data[item]
def __setitem__(self, item, tup):
"""
Args:
item: An integer index or a slice (eg. 2, 1:, 1:5)
tup: tuple arguments for the example, according to dataset order as indicated by `fields`.
"""
self.data[item] = tup
def __iter__(self):
"""
Returns: A iterator over the instances in the dataset
"""
for i in range(len(self)):
yield self[i]
@classmethod
def construct(cls, **kwargs):
"""
Generic dataset loading method. This method must be implemented by
user datasets.
Args:
**kwargs: key word arguments for the construct method
Returns: instance of a Dataset from a custom format.
"""
raise NotImplementedError()
def split(self, *proportions):
"""
Splits a dataset based on proportions.
"""
assert abs(sum(proportions) - 1) < 1e-9
start = 0
splits = []
for p in proportions:
assert isinstance(p, float)
assert p < 1
size = int(len(self) * p)
end = start + size
ex = self[start:end]
splits.append(self.__class__(self.fields).add_examples(ex))
start = end
# add the remaining to the last split
splits[-1].add_examples(self[start:])
return splits
@classmethod
def deserialize(cls, fname):
"""
Deserializes a Dataset object from a JSONL file.
Args:
fname: The JSONL formatted file from which to load the dataset
Returns: loaded Dataset instance
"""
assert isinstance(fname, str)
with open(fname) as f:
header = next(f).rstrip("\n")
fields = json.loads(header)
d = cls(fields)
for line in f:
row = json.loads(line.rstrip("\n"))
d.add_example(*row)
return d
def serialize(self, fname):
"""
Serializes a Dataset object to a JSONL file
Args:
fname: The JSONL formatted file to write the dataset to
"""
assert isinstance(fname, str)
with open(fname, "w") as f:
f.write(json.dumps(self.fields) + "\n")
for example in self:
f.write(json.dumps(example) + "\n")
class NYTSummarization(Dataset):
FIELD_NAMES = ["article_tokens", "summary_tokens", "pointers"]
# Years before 1996 don't have any abstract/summaries, so we can skip them
YEARS_WITH_ABSTRACTS = list(range(1996, 2007 + 1))
# train/dev/test splits
SPLITS = [0.9, 0.05, 0.05]
@classmethod
def construct(
cls, location, fname="nyt-corpus.tgz", multiprocess=True, n_pool_workers=None
):
"""Create the NYT summarization dataset.
:param multiprocess: determines whether multiprocessing is used for
parsing documents in parallel.
:param n_pool_workers: For multiprocess only. Determines how many
processes are used to perform parallel operations.
default: CPU_COUNT * 2
"""
# Set logging
logger = logging.getLogger("nyt")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(logging.INFO)
ch.setFormatter(
logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
)
logger.addHandler(ch)
dataset = cls(cls.FIELD_NAMES)
# Set default value
if multiprocess and n_pool_workers is None:
n_pool_workers = multiprocessing.cpu_count() * 2
# Extract members of main tar file
logger.info("Extract full tar...")
print(fname)
with tarfile.open(fname, "r:gz") as tar:
for year in cls.YEARS_WITH_ABSTRACTS:
for month in range(1, 12 + 1):
tar_path = os.path.join(
"nyt_corpus", "data", str(year), "%02d.tgz" % month
)
dest_path = os.path.join(location, os.path.splitext(tar_path)[0])
if not os.path.isdir(dest_path):
try:
logger.info("Extract %s..." % tar_path)
tar.extract(tar_path, path=location)
except KeyError: # No archive for this month/year
pass
logger.info("Done extracting")
# Extract 2nd level tar files, possibly in parallel
iter_tar_files = glob(
os.path.join(location, "nyt_corpus", "data", "*", "*.tgz")
)
# Filter existing paths
logger.info("Filter tars...")
iter_tar_files = [
path
for path in iter_tar_files
if not os.path.isdir(os.path.splitext(path)[0])
]
logger.info("Total tars: %s" % len(iter_tar_files))
logger.info("Extract individual tars... (this might take a while)")
if iter_tar_files:
if multiprocess:
with closing(multiprocessing.Pool(n_pool_workers)) as pool:
pool.map(_extract_tar, iter_tar_files)
else:
for path in iter_tar_files:
_extract_tar(path)
logger.info("Done extracting")
logger.info("List files...")
# List all individual XML files
iter_docs = glob(
os.path.join(location, "nyt_corpus", "data", "*", "*", "*", "*.xml")
)
# iter_docs = iter_docs[:100]
logger.info("Parse documents (this might take a while)...")
if multiprocess:
with closing(multiprocessing.Pool(n_pool_workers)) as pool:
fields_list = pool.map(_parse_nyt_document, iter_docs)
else:
fields_list = [_parse_nyt_document(path) for path in iter_docs]
logger.info("Done parsing.")
logger.info("Add examples...")
for fields in fields_list:
if fields is not None:
dataset.add_example(*fields)
logger.info("Done adding")
return dataset.split(*cls.SPLITS)
def _extract_tar(path):
"""Extract a tar file of the NYT dataset."""
extraction_path = os.path.dirname(path)
with tarfile.open(path, "r:gz") as tar:
tar.extractall(extraction_path)
os.remove(path) # No need to keep another copy of it
def _parse_nyt_document(path, clean_summary=True, remove_corrections=True):
"""Parse an XML document and return relevant fields."""
try:
xml = ET.parse(path)
except:
print("Found empty xml, skipping")
return None
headline_el = xml.find(".//hedline")
byline_el = xml.find(".//byline[@class='print_byline']")
article_el = xml.find(".//block[@class='full_text']")
summary_el = xml.find(".//abstract")
if any(el is None for el in [article_el, summary_el, headline_el]):
return None
headline = " ".join(
[text.strip() for text in headline_el.itertext() if text.strip()]
)
summary = " ".join([text.strip() for text in summary_el.itertext() if text.strip()])
article = "\n".join(
[text.strip() for text in article_el.itertext() if text.strip()]
)
if byline_el is not None:
byline = " ".join(
[text.strip() for text in byline_el.itertext() if text.strip()]
)
else:
byline = ""
# Remove useless bits at the end of the summary
if clean_summary:
summary = re.sub(r" ?\(.\)", " ", summary)
summary = re.sub(
r"[;:] (photo|graph|chart|map|table|drawing|listing|interview)s?(?=([;:]| *$))",
" ",
summary,
)
summary = summary.strip()
# TODO: add entities too
# TODO: convert numbers to 0!!!!!!
headline = corenlp_tokenize(headline)
# Headline is sometimes duplicate
if headline[len(headline) // 2 :] == headline[: len(headline) // 2]:
headline = headline[len(headline) // 2 :]
byline = corenlp_tokenize(byline)
article = corenlp_tokenize(article)
summary, entities = corenlp_tokenize(summary, with_entities=True)
concat = headline + ["***END_HEADLINE***"] + byline + ["***END_BYLINE***"] + article
pointers = get_nyt_pointers(concat, summary, entities)
return concat, summary, pointers
def corenlp_tokenize(
text,
corenlp_server_url="http://localhost:9000",
with_entities=False,
convert_numbers=True,
):
CORENLP_MAX_LEN = 100000
ENTITIES_TYPE = {"PERSON", "LOCATION", "ORGANIZATION", "MISC"}
annotators = ["tokenize", "ssplit"]
if with_entities:
entities = set()
annotators.append("ner")
response = requests.post(
corenlp_server_url
+ '?properties={"annotators":"'
+ ",".join(annotators)
+ '","outputFormat":"json"}',
data=text[:CORENLP_MAX_LEN].encode("utf-8"),
headers={"Content-Type": "application/x-www-form-urlencoded ; charset=UTF-8"},
)
assert response.ok, text
tokens = []
for sent in response.json()["sentences"]:
tokens += [t["word"] for t in sent["tokens"]]
if with_entities:
entities.update(
[t["word"].lower() for t in sent["tokens"] if t["ner"] in ENTITIES_TYPE]
)
if convert_numbers:
for idx, _ in enumerate(tokens):
tokens[idx] = re.sub(r"\d", "0", tokens[idx])
if with_entities:
return tokens, entities
else:
return tokens
def get_nyt_pointers(article, summary, entities):
entities_idx = {}
for idx, token in enumerate(article):
if token.lower() in entities:
entities_idx[token.lower()] = idx
return [entities_idx.get(token.lower(), -1) for token in summary]
if __name__ == "__main__":
train, val, test = NYTSummarization.construct(".")
train.serialize("train")
val.serialize("val")
test.serialize("test")