-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
336 lines (279 loc) · 10.9 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
Copyright (c) 2019 Emil Lynegaard
Distributed under the MIT software license, see the
accompanying LICENSE.md or https://opensource.org/licenses/MIT
Evaluation script for a Seq2Seq model.
Prints average ROUGE scores to stdout, and saves configuration and results to CSV-file.
Optionally supports evaluation with 'py-rouge', reducing external dependencies.
All summaries can be saved in JSON format using `-s` or `--save`.
Example:
python evaluate.py log/summarization.tar data/test.tsv
python evaluate.py log/summarization.tar data/test.tsv --limit 100
python evaluate.py log/summarization.tar data/test.tsv --limit 100 --use_python
python evaluate.py log/summarization.tar data/test.tsv --limit 100 -s
"""
import os
import argparse
import math
import tempfile
import json
from pathlib import Path
import torch
import rouge
import pyrouge
import nltk
from tqdm import tqdm
from data import Dataset
from beam_search import BeamSearch
from util import (
make_log_dict,
log_results,
suppress_stdout_stderr,
save_summaries,
flatten_scores,
)
import train
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Rouge:
"""Make `Rouge155` input/output compatible with py-rouge's `Rouge`"""
def __init__(self, use_python=False):
self.use_python = use_python
@staticmethod
def split_sentences(text, language="english"):
"""
Rouge libraries expect one sentence per line.
As such this splits a text of sentences into this format
using nltk's sent_tokenize.
:param text: The text to divide by sentences
:param language: The language of the given text
"""
return "\n".join(nltk.sent_tokenize(text, language))
@staticmethod
def _get_scores_perl(hypothesis, references):
# get path to rouge based on __file__ path
file_path = os.path.dirname(os.path.realpath(__file__))
r = pyrouge.Rouge155(os.path.join(file_path, "tools/ROUGE-1.5.5"))
ref_dir = tempfile.mkdtemp()
hyp_dir = tempfile.mkdtemp()
for idx, (ref, hyp) in enumerate(zip(references, hypothesis)):
ref_file = os.path.join(ref_dir, "%06d_reference.txt" % idx)
hyp_file = os.path.join(hyp_dir, "%06d_hypothesis.txt" % idx)
with open(ref_file, "w") as rf, open(hyp_file, "w") as hf:
rf.write(ref)
hf.write(hyp)
# model is gold standard, system is hypothesis
r.model_dir = ref_dir
r.system_dir = hyp_dir
r.model_filename_pattern = "#ID#_reference.txt"
# pylint: disable=anomalous-backslash-in-string
r.system_filename_pattern = "(\d+)_hypothesis.txt"
output = r.convert_and_evaluate()
output = r.output_to_dict(output)
return {
"rouge-1": {
"p": output["rouge_1_precision"],
"r": output["rouge_1_recall"],
"f": output["rouge_1_f_score"],
},
"rouge-2": {
"p": output["rouge_2_precision"],
"r": output["rouge_2_recall"],
"f": output["rouge_2_f_score"],
},
"rouge-l": {
"p": output["rouge_l_precision"],
"r": output["rouge_l_recall"],
"f": output["rouge_l_f_score"],
},
}
@staticmethod
def _get_scores_python(hypothesis, references):
"""Note: py-rouge mixes up recall/precision"""
return rouge.Rouge(
metrics=["rouge-n", "rouge-l"],
max_n=2,
limit_length=False,
apply_avg=True,
alpha=0.5, # Default F1_score
stemming=True,
ensure_compatibility=True,
).get_scores(hypothesis, references)
def get_scores(self, hypothesis, references):
"""
Get rouge scores as a dict of format:
{"rouge-1": {"p": 0.5,
"r": 0.3,
"f": 0.4},
"rouge-2: ...,
"rouge-l: ...
}
:param references: A list of reference summaries
:param hypothesis: A list of corresponding summaries
:returns: A dictionary with the rouge scores
"""
refs_split = list(map(self.split_sentences, references))
hyps_split = list(map(self.split_sentences, hypothesis))
if self.use_python:
return self._get_scores_python(hyps_split, refs_split)
with suppress_stdout_stderr():
return self._get_scores_perl(hyps_split, refs_split)
def print_scores(scores):
"""
Pretty print rouge scores to stdout
:param scores: The scores output by `Rouge().get_scores`
:returns: None
"""
for r in sorted(scores.keys()):
precision = scores[r]["p"] * 100
recall = scores[r]["r"] * 100
f1 = scores[r]["f"] * 100
print(r.upper() + ":")
print("\t Precision: %.2f" % precision)
print("\t Recall: %.2f" % recall)
print("\t F1: %.2f" % f1)
def batch_to_text(bs, batch):
"""
Utility function to create textual output for a `batch` using given
`BeamSearch` instance.
:param model:
Seq2Seq model used to generate the summaries optionally wrapped in DataParallel
:param bs: `BeamSearch` instance used for generating summaries
:param batch: `Batch` instance used for beam search
:returns:
A resulting list of summaries as strings.
"""
vocab = batch.vocab
outputs = []
for ids in bs.search(batch):
tokens = []
# skip the first SOS if it is present
if ids[0] == vocab.SOS:
ids = ids[1:]
for i in ids:
# if EOS was produced, we don't care about the rest
if i == vocab.EOS:
break
tokens.append(vocab[i])
outputs.append(" ".join(tokens))
return outputs
def generate_summaries(model, dataset, cfg, limit=math.inf, shuffle=False, pbar=None):
"""
Generate summaries using the given `model` on the given `dataset`.
Expects the given model to be in eval mode.
:param model: Use this model for evaluation
:param dataset: The dataset to evaluate on
:param cfg:
The `Config` used for the given model from which we get
info on whether it uses pointer generation or not.
:param limit: Limit the pairs evaluated to this many
:param shuffle: Whether to shuffle the dataset before yielding batches
:param pbar: Optional pbar (tqdm) to update with progress
"""
batch_size = 1 # beam_search currently only supports batch_size 1
bs = BeamSearch(model, cfg=cfg)
with torch.no_grad():
generator = dataset.generator(batch_size, cfg.pointer, shuffle)
references = []
hypothesis = []
for idx, batch in enumerate(generator):
hyps = batch_to_text(bs, batch)
refs = [" ".join(e.tgt) for e in batch.examples]
hypothesis.extend(hyps)
references.extend(refs)
if batch_size * idx >= limit:
break
if pbar is not None:
pbar.update(batch_size)
pbar.close()
return (hypothesis, references)
def evaluate(model, dataset, cfg, use_python=False, **kwargs):
"""
Evaluate the `model` on the given `dataset`.
:param model: Use this model for evaluation
:param dataset: The dataset to evaluate on
:param cfg:
The `Config` used for the given model from which we get
info on whether it uses pointer generation or not.
:param limit: Limit the pairs evaluated to this many
:param shuffle: Whether to shuffle the dataset before yielding batches
:param progress: Print decode progress to stdout if True
:param use_python: Use py-rouge instead of pyrouge (Perl 155 wrapper) if True
"""
hypothesis, references = generate_summaries(model, dataset, cfg, **kwargs)
return Rouge(use_python=use_python).get_scores(hypothesis, references)
def evaluate_json(filename, output, use_python=False):
"""
Evaluate a JSON file of references and hypothesis as stored
by `util.save_summaries`.
:param filename: Path of the JSON file to evaluate
:param output: Path to store the CSV results
:param use_python:
Evaluate with original ROUGE Perl implementation if `False` (default),
otherwise uses py-rouge reimplementation.
:returns: The resulting ROUGE scores.
"""
with open(filename, "r") as f:
print("Loading JSON...")
data = json.load(f)
summaries = data["summaries"]
hyps, refs = list(
zip(*(map(lambda i: (i["hypothesis"], i["reference"]), summaries)))
)
print("Getting ROUGE scores...")
scores = Rouge(use_python=use_python).get_scores(hyps, refs)
log_dict = data["log_dict"]
log_dict["eval_package"] = "py-rouge" if use_python else "pyrouge"
log_dict = {**log_dict, **flatten_scores(scores)}
print("Saving results to %s" % output)
log_results(log_dict, output)
print_scores(scores)
def prepare_arg_parser():
"""Create simple arg parser expecting 2 positional arguments"""
parser = argparse.ArgumentParser(
description="Evaluate a model on a test file and print its rouge scores"
)
parser.add_argument(
"model_file", metavar="model-path", type=str, help="path to model to evaluate"
)
parser.add_argument(
"test_file",
metavar="test-path",
type=str,
nargs="?",
default="data/cnndm_abisee_test.tsv",
help="path to .tsv-file with test pairs",
)
parser.add_argument(
"-s",
"--save",
action="store_true",
help="don't save the references/decoded summaries in a json file",
)
parser.add_argument(
"--use_python",
action="store_true",
help="use python ROUGE imlpementation instead of official Perl 155 implementation",
)
return parser
def main():
"""Run evaluation on given test_file and print ROUGE scores to console"""
args, unknown_args = prepare_arg_parser().parse_known_args()
model_file = args.model_file
test_file = args.test_file
model, _optimizer, vocab, stats, cfg = train.load_model(model_file, unknown_args)
model.eval()
dataset = Dataset(test_file, vocab, cfg, evaluation=True)
print("Evaluating with %s on %d pairs:" % (DEVICE.type.upper(), len(dataset)))
with tqdm(total=min(len(dataset), cfg.limit), ncols=0, desc="Evaluating") as pbar:
hypothesis, references = generate_summaries(model, dataset, cfg, pbar=pbar)
scores = Rouge(use_python=args.use_python).get_scores(hypothesis, references)
log_dict = make_log_dict(
model_file, test_file, scores, stats, cfg, hypothesis, args.use_python
)
log_results(log_dict)
if args.save:
destination = Path(model_file).with_suffix(".json")
save_summaries(destination, hypothesis, references, log_dict=log_dict)
print_scores(scores)
if __name__ == "__main__":
main()