forked from qtaim/aimpac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproaimv.f
8888 lines (8836 loc) · 257 KB
/
proaimv.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
PROGRAM PROAIMV
C
C Version 94 Revision B
C
C THIS PROGRAM DETERMINES PROPERTIES OF ATOMS IN MOLECULES FROM
C AB-INITIO MOLECULAR WAVEFUNCTIONS. THIS IS DONE BY INTEGRATING
C CORRESPONDING PROPERTY DENSITIES OVER THE ATOMIC BASINS,
C THE BOUNDARIES OF WHICH ARE SURFACES HAVING LOCAL ZERO-FLUX OF THE
C GRADIENT OF THE ELECTRON DENSITY (GRADRHO). THE ATOMIC SURFACES
C ARE FOUND EITHER BY WALKING ALONG TRAJECTORIES OF GRADRHO FROM
C THE (3,-1) BOND CRITICAL POINTS OF RHO WHICH ARE IN THE ATOMIC
C SURFACE ("PROAIM") OR BY FINDING THE POINTS ALONG EACH INTEGRATION
C RAY WHERE THE ATTRACTOR OF THE GRADRHO TRAJECTORIES INTERSECTING
C THE RAY CHANGES FROM THE NUCLEUS OF THE INTEGRATED ATOM TO ANOTHER
C NUCLEUS, OR VICE VERSA. THE LATTER SURFACE ALGORITHM IS CALLED
C "PROMEGA."
C
C For Information on the Original PROAIM program and a description
C of the output please see:
C "CALCULATION OF THE AVERAGE PROPERTIES OF ATOMS IN
C MOLECULES. II"; F.W. Biegler Konig, R.F.W. Bader, T. Tang; Journal
C of Computational Chemistry; Volume 13 (No. 2); 1982
C
C QUESTIONS AND SUGGESTIONS SHOULD BE DIRECTED TO:
C Richard Bader McMASTER UNIVERSITY, DEPT. OF CHEMISTRY,
C HAMILTON, ONTARIO CANADA
C BITNET ADDRESS: BADER@MCMAIL.CIS.MCMASTER.CA
C or
C Todd A. Keith
C keith@babbage.chemistry.mcmaster.ca
C
C JANUARY-MARCH 1981:
C PROAIM WRITTEN BY F.W. BIEGLER-KOENIG AND J.A. DUKE MCMASTER UNIV.
C NOVEMBER 1988-FEBRUARY 1989:
C PROAIM MODIFIED AND STREAMLINED KEITH E LAIDIG MCMASTER UNIV.
C
C INTEGRATION STRUCTURE HEAVILY MODIFIED,VECTORIZED --> "PROAIMV"
C TODD A. KEITH: McMASTER UNIVERSITY, HAMILTON ONTARIO 1991
C
C PRIMITIVE CUTOFF ALGORITHM INCORPORATED
C TAK JUNE 1, 1992
C
C SEPARATION OF BETA SPHERE INTEGRATION FROM OUTER INTEGRATION
C INCORPORATED. TAK JUNE 10 1992
C
C ADDITION OF F FUNCTIONS RICHARD BONE 1993
C
C MAJOR CLEANUP AND ALLOWANCE OF ARBITRARY EVEN-ORDER QUADRATURE
C FOR THETA, PHI AND RADIAL INTEGRATIONS. ADDITION OF PROMEGA
C SURFACE ALGORITHM AND CHANGE OF INPUT/OUTPUT FORMAT. (PROMEGA
C SURFACE ALGORITHM DEVELOPED BY TAK and James R. Cheeseman.)
C TAK 12/93
C
C INCORPORATION OF MAGNETIC PROPERTIES CAPABILITY
C TAK 3/94
C
C Generalization of Atomic Overlap Matrix (AOM) and AOM derived
C properties to ROHF, UHF and natural orbital wavefunctions.
C JRC and TAK 3/94
C
C Fixed bug for F-functions in "gauscheck". TAK 3/94
C
C PROAIMV CAN HANDLE S,P,D(6) and F(10) TYPE GAUSSIAN FUNCTIONS
C
C The maximum number of Theta, Phi and Radial points are determined
C by the parameters MaxTht, MaxPhi and MaxRad. Presently, they are
C set at 200, which is larger than anyone will probably ever want ...
C
C The maximum number of nuclei, molecular orbitals and primitives
C are determined by the parameters Mcent, MMO and MPRIMS. Presently
C they are set at 50, 100 and 500 respectively.
C
C**********************************************************************
C TO LOWER MEMORY REQUIREMENTS, LOWER THE PARAMETER MPTS IN GAUS3,
C FUNC3, INTARC and TRUDGE3 - BUT THE LOWER MPTS, THE SLOWER THE JOB.
C DO NOT CHANGE THE PARAMETERS MPTS0 AND MPTSX IN GAUSCHECK UNLESS
C THE CUTOFF ALGORITHM IS MODIFIED.
C**********************************************************************
C
C To Run PROAIMV, two files are needed: the AIMPAC wavefunction
C file (with the extension ".wfn") and the integration input file
C (with the extension ".inp"). PROAIMV produces an output file
C with the extension ".int". For example, to run PROAIMV on a
C carbon atom of c4h4 (with the executable "proaimv"):
C
C proaimv c4h4_c1 c4h4
C
C where c4h4_c1 refers to the file "c4h4_c1.inp" and c4h4 refers
C to the wavefunction file "c4h4.wfn".
C
C The input for PROAIMV is dependent upon which Surface Algorithm
C is to be used. The first surface algorithm (PROAIM) is usually
C faster but requires more user input and may sometimes seriously
C fail. The second surface algorithm (PROMEGA) is slower but
C rarely fails.
C
C As an Example, an Input File for a PROAIM Job is given below
C within the Starred (*) box for a carbon atom of
C tetrahedrane (C4H4):
C
C *************************************************
CARD1 *C4H4_C1 RHF/6-31G** *
CARD2 * C 1 *
CARD3 *PROAIM *
CARD4 * 4 3 1 *
CARD5 *9.71207959E-10 1.98184301E-09 1.15576886E+00 * (C1-C2 bcp)
CARD6 *1.15576886E+00 -4.37939987E-09 -2.58361695E-09 * (C1-C3 bcp)
CARD7 *-8.22575222E-10 1.15576886E+00 5.95489085E-09* (C1-C4 bcp)
CARD8 *1.72948569E+00 1.72948569E+00 1.72948568E+00 * (C1-H5 bcp)
CARD9 *3.99523990E-01 -3.99523987E-01 3.99523978E-01 * (C1-C2-C3 rcp)
CARD10 *-3.99523982E-01 3.99523994E-01 3.99523989E-01* (C1-C2-C4 rcp)
CARD11 *3.99523989E-01 3.99523987E-01 -3.99523978E-01 * (C1-C3-C4 rcp)
CARD12 *1.14033776E-08 2.52500697E-09 -3.50325120E-10 * (C1-C2-C3-C4 ccp)
CARD13 *1 2 8 0 *
CARD14 *1 3 8 0 *
CARD15 *2 3 8 0 *
CARD16 *64 48 96 *
CARD17 *OPTIONS *
CARD18 *INTEGER 1 *
CARD19 *6 1 *
CARD20 *REAL 2 *
CARD21 *1 9.0 *
CARD22 *4 1.0D-8 *
C *************************************************
C
Card1 is the job title (up to 80 characters)
Card2 is the Atom Name in A4I4 Format
Card3 specifies that the PROAIM surface algorithm is to be used
Card4 specifies the number of bond critical points (bcp), ring critical
C points (rcp) and cage critical points lying within the surface
C of the carbon atom
Cards5-8 specify the coordinates of the bond critical points (in au).
cards9-11 specify the coordinates of the ring critical points (in au).
card12 specifies the coordinates of the cage critical point (in au).
Cards13-15 specify how the ring critical points are linked to the bond
C critical points and the cage critical points. Thus, Card13
C says that the first rcp is connected to the first two bcp's
C and to the cage critical point. THE INFORMATION ABOUT THE
C CRITICAL POINTS MUST BE DETERMINED BY THE PROGRAM "EXTREME".
Card16 Specifies three numerical integration parameters: the number
C of Phi planes, the number of theta planes and the number of
C radial points to be used per integration ray within the Beta Sphere.
Card17 Specifies whether the user wishes to change the default
C parameters of the program. If only defualt values are to be
C used then the OPTIONS card should be absent.
Card18 Specifies that one integer parameter is to be specified in the
C following cards.
Card19 specifies that integer parameter 6 is to be set to the value 1
Card20 Specifies that two real parameters are to be specified in the
C following cards.
Card21 Specifies that the real parameter 1 is set to the value 9.0
Card22 Specifies that the real parameter 4 is set to the value 1.0D-8
C
C A description of the parameters and their default values is as
C follows if PROAIM is specified:
C
C INTEGER OPTIONS:
C (1) = whether pre-job primitive cutoffs are to be used: 0/1 = No/Yes
C Default is 1.
C (2) = Number of points per gradrho path in the surface tracing
C Default is 140
C (3) = Number of basic gradrho paths used in the surface tracing
C Default is 80
C (4) = Multiple of the default number of radial points to be
C used for integration outside the BEta sphere and the default
C number of theta and phi planes to be used inside the Beta
C Sphere. Default is 1.
C (5) = Maximum number of gradrho paths which can be inserted between
C adjacent basic paths. Default is 6
C
C (6) = Whether to calculate the atomic overlap matrix: 0/1 = No/Yes
C Default is 0. For correlated wavefunctions, where there
C are a relatively large number of Molecular orbitals, the
C computation of the AOM can become dominant in terms of CPU
C time.
C (7) = Whether to calculate second-order magnetic properties - namely
C the atomic contribution to the shielding tensors of the nuclei
C and the atomic magnetic susceptibility tensor and
C the atomic "net current tensor". Note that for magnetic
C properties, the first-order wavefunctions for the Lx, Ly, Lz
C Px, Py and Pz perturbations are required in addition to the
C unperturbed wavefunction. Default is no (0).
C
C (8) = Type of Gauge Transformations to perform to calculate the
C Current Distribution Within the atom, and hence the atom's
C other magnetic properties. 0 = Use IGAIM method - gauge origin
C coincident with the nucleus of the integrated atom.
C 1 = use another single gauge origin - the gauge origin should be
C specified (X,Y,Z) on the following card. 2=Becke-Igaim.
C Default is 0 (IGAIM).
C
C (9) = If this is an unrestricted wfn, the number of the first beta MO.
C Default = 0.
C
C REAL OPTIONS:
C (1) = Maximum distance from the nucleus of the integrated atom
C to integrate to. Default is 9.0 au
C (2) = Value of the first rho isosurface. Default is 0.001 au.
C (3) = Value of the second rho isosurface. Default is 0.002 au.
C (4) = Cutoff Value for the primitive cutoff algorithms. Smaller
C is more accurate but more time-consuming. Default is 1.0D-9.
C (5) = Maximum Allowable Distance between ends of adjacent
C gradrho paths. Default is 0.6 au.
C (6) = Length of Grad Rho Paths in Surface Tracing.
C Default is 8.0 au.
C
C The input file for a PROMEGA job is simpler. An example is given
C below in the starred (*) box for the same carbon atom:
C
C **********************************************
CARD1 *C4H4_C1 RHF/6-31G** *
CARD2 * C 1 *
CARD3 *PROMEGA *
CARD4 *64 48 96 *
CARD5 *OPTIONS *
CARD6 *INTEGER 1 *
CARD7 *3 4 *
CARD8 *REAL 2 *
CARD9 *6 0.0015 *
CARD10 *7 0.03 *
C **********************************************
C
Card1 specifies the job title A80
Card2 specifies the atom name A4I4
Card3 specifies that the PROMEGA surface algorithm is to be used
Card4 is the number of phi, theta and radial points as in Card 16 above.
Card5 specifies whether optional parameters are to be supplied in the
C following cards. If all default values are to be used, this
C OPTIONS card should not be specified
Card6 Specifies that one integer parameter is to be specified in the
C following cards.
Card7 specifies that integer parameter 3 is to be set to the value 4.
Card8 Specifies that two real parameters are to be specified in the
C following cards.
Card9 Specifies that the real parameter 6 is set to the value 0.0015
Card10 Specifies that the real parameter 7 is set to the value 0.03
C
C A description of the parameters and their default values is as
C follows if PROMEGA is specified:
C
C INTEGER OPTIONS:
C (1) = whether second and third intersections of the integration
C rays with the atomic surface are searched for 1/0 = No/Yes.
C Default is 1 (search only for first intersections).
C (2) = Number of small steps per regular step in tracing the
C gradrho trajectories. Default is 5
C (3) = Order of Adam's Bashforth-Moulton predictor corrector method
C to be used in calculating the gradrho trajectries.
C Defualt is 6.
C (4) = Multiple of the default number of radial points to be
C used for integration outside the BEta sphere and the default
C number of Theta and Phi planes to be used inside the Beta
C Sphere. Default is 1.
C
C (6) = Whether to calculate the atomic overlap matrix: 0/1 = No/Yes
C Default is 0. For correlated wavefunctions, where there
C are a relatively large number of Molecular orbitals, the
C computation of the AOM can become dominant in terms of CPU
C time so this option should be considered for such cases.
C
C (7) = Whether to calculate second-order magnetic properties - namely
C the atomic contribution to the shielding tensors of the nuclei
C and the atomic magnetic susceptibility tensor and
C the atomic "net current tensor". Note that for magnetic
C properties, the first-order wavefunctions for the Lx, Ly, Lz
C Px, Py and Pz perturbations are required in addition to the
C unperturbed wavefunction.
C
C (8) = Type of Gauge origin to use in order to calculate the
C Current Distribution Within the atom, and hence the atom's
C other magnetic properties. 0 = Use IGAIM method - gauge origin
C coincident with the nucleus of the integrated atom.
C 1 = use another single gauge origin - the gauge origin should be
C specified (X,Y,Z) on the following card. 2=Becke-Igaim.
C Default is 0 (IGAIM).
C
C (9) = If this is an unrestricted wfn, the number of the first beta MO.
C Default = 0.
C
C REAL OPTIONS:
C (1) = Maximum Distance from nucleus of integrated atom to
C integrate to. Default is 9.0 au
C (2) = Value of the first rho isosurface. Default is 0.001 au.
C (3) = Value of the second rho isosurface. Default is 0.002 au.
C (4) = Value for the primitive cutoff algorithms. Smaller is more
C accurate but more time-consuming. Default is 1.0D-9.
C (5) = How far out along the integration rays to search for
C an intersection. Default is 7.5.
C (6) = How close to the atomic surface to get in intersections
C search. Default is 0.001. Smaller is better but more time
C consuming.
C (7) = Step Size for tracing the gradrho trajectories.
C Default is 0.025 au
C (8) = Initial Step Size along integration rays in search for
C First intersections. Default is 0.25 au
C (9) = Initial Step Size along integration rays in search for
C Second and Third intersections. Default is 0.025 au
C
C Atomic Units only are used throughout ...
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CHARACTER*80 WFNTTL,JOBTTL,LINE
CHARACTER*40 INP,INT,WFN
CHARACTER*8 AT,ATNAM,ANUC
CHARACTER*7 OptStr,IStr,StrIn,UpStr
CHARACTER*6 PAIM,PMEGA,Gstrng,Gupstr
CHARACTER*4 FINP, FWFN, FINT,RSTR
LOGICAL RHF,ROHF,ABNAT,RNAT
PARAMETER (MCENT=50, MaxCrt=20,MxBcrt=10,MaxPhi=200,MaxTht=200,
$MaxRad=200,MaxPrp=200,MMO=300)
COMMON/UNITS/ ISRF,INPT,IOUT,IWFN,IDBG
COMMON /DIRK/ Toll,TOLL2(MCENT),STP,SIZE,FSTP,CTF,SSTP,NOSEC,
$ISECT,ICP,ISTEP,NABMO,Nacc,IDOAOM,IDOMAG,IMagM,NFBETA,RHF,ROHF,
$ABNAT,RNAT,XGO,YGO,ZGO
COMMON/C7/ CT(3,3), X, Y, Z, NCRNT
COMMON/PARA/ NINS(Mxbcrt),IBETPTS,INMAX,NNN,NPATH,DIST,
$DMAX,Amax,ADIFF,Tinf
COMMON/ATOMS/ XC(MCENT),YC(MCENT),ZC(MCENT),CHARG(MCENT),NCENT
COMMON/STRING/ WFNTTL,JOBTTL,ATNAM(MCENT),NAT
COMMON/VALUES/ THRESH1,THRESH2,GAMMA,TOTE
COMMON/NCUT/ CUTOFF,NDOCUT,NPR, NPRA, NPRB, NZEROA, NZEROB
COMMON /LIMITS/ RMAX, NATMX, NFLIM, NPROPS
COMMON /ORBTL/ EORB(MMO),PO(MMO),ROOTPO(MMO),NMO
DIMENSION CRIT(3,MaxCrt),NSRC(4,Mxbcrt),IOPAIM(20),IOPEGA(20),
$OPAIM(20),OPEGA(20)
DATA FINP /'.inp'/, FWFN /'.wfn'/, FINT /'.int'/
DATA ANUC /'NON NUCL'/,PAIM/'PROAIM'/,PMEGA/'PROMEG'/
DATA OptStr/'OPTIONS'/,Istr/'INTEGER'/,Rstr/'REAL'/
Data Pt1/0.1d0/,One/1.0d0/,Two/2.0d0/,Thresh3/1.1d0/,
$thresh4/0.1d0/
496 Format('Optional Parameters Read From Input')
497 Format('All Default Parameters Will be Used')
498 Format('No Non-nuclear attractors Using Promega Yet',
$' - Use Proaim Option')
500 FORMAT(A80)
501 FORMAT(A7,1X,1I1)
502 FORMAT(A4,1X,1I1)
510 FORMAT(A8)
511 FORMAT(/,'NORMAL TERMINATION OF PROAIMV')
513 Format(/,'JobTim = ',I2)
789 Format('Will calculate magnetic properties')
800 FORMAT(' PROAIMV - Version 94 - Revision B')
810 FORMAT(/,A80)
830 FORMAT(/,A80)
840 FORMAT(' -V/T FOR THIS WAVEFUNCTION = ',1F20.11)
850 FORMAT(' MOLECULAR SCF ENERGY (AU) = ',1F20.11)
859 Format('Unrestricted Wavefunction But First Beta Orbital',/,
$' Not Specified - Atomic Overlap Matrix Will Not be Calculated')
860 FORMAT(' INTEGRATION IS OVER ATOM ',A8)
861 FORMAT(' INTEGRATION IS OVER A Non-Nuclear Attractor')
1999 Format(A6)
2333 Format('Need to specify either proaim or promega as surface',
$' method on Card 3')
2999 Format('PROAIM SURFACE ALGORITHM USED')
3010 Format('Requested Number of Phi Planes Exceeds Maximum of '
$,1I6)
3011 Format('Requested Number of Theta Planes Exceeds Maximum of '
$,1I6)
3012 Format('Requested Number of Radial Points Exceeds Maximum of '
$,1I6)
3999 Format('PROMEGA SURFACE ALGORITHM USED')
4999 Format('Critical Points in Atomic Surface:')
5999 Format(1I3,' Bond ',1PE16.8,1X,1PE16.8,1X,1PE16.8)
6999 Format(1I3,' Ring ',1PE16.8,1X,1PE16.8,1X,1PE16.8)
7999 Format(11X,'Connected to bonds ',1I3,1X,1I3,' and cages ',
$1I3,1X,1I3)
8999 Format(1I3,' Cage ',1PE16.8,1X,1PE16.8,1X,1PE16.8)
C
CALL MAKNAME(1,INP,ILEN,FINP)
IF (ILEN .EQ. 0) STOP ' usage: proaimv inpfile wfnfile '
CALL MAKNAME(1,INT,ILEN,FINT)
IF (ILEN .EQ. 0) STOP ' usage: proaimv inpfile wfnfile '
CALL MAKNAME(2,WFN,ILEN,FWFN)
IF (ILEN .EQ. 0) STOP ' usage: proaimv inpfile wfnfile '
C
OPEN (INPT,FILE=INP,status='unknown')
OPEN (IOUT,FILE=INT,status='unknown')
OPEN (IWFN,FILE=WFN,status='unknown')
C
WRITE(IOUT,800)
READ(INPT,500) JOBTTL
CALL RDPSI
WRITE(IOUT,830) WFNTTL
WRITE(IOUT,840) GAMMA
WRITE(IOUT,850) TOTE
WRITE(IOUT,810) JOBTTL
READ(INPT,510) AT
IF (AT .EQ. ANUC) READ(INPT,*) XNN,YNN,ZNN
READ(INPT,1999)GSTRNG
Call CaseUp(Gstrng,GUpStr,6)
IF(GUpSTR(1:6).EQ.PAIM)Then
IMEGA=0
ElseIF(GUpSTR(1:6).EQ.PMEGA)THEN
IMEGA=1
Else
Write(Iout,2333)
Stop 'Unrecognized Surface Method Specified '
Endif
IF(IMEGA.EQ.0)Write(Iout,2999)
IF(IMEGA.EQ.1)Write(Iout,3999)
IF(AT.EQ.ANUC.AND.IMEGA.EQ.1)Then
Write(iout,498)
Stop
Endif
IF(IMEGA.EQ.0)THEN
READ(INPT,*) N,NRING,NCAGE
NT = N + NRING + NCAGE
DO 100 I = 1,NT
READ(INPT,*) (CRIT(J,I),J=1,3)
100 CONTINUE
IF (NRING .NE. 0) THEN
DO 105 I = 1,NRING
II = N + I
READ(INPT,*) (NSRC(J,I),J=1,4)
105 CONTINUE
ENDIF
WRITE(IOUT,4999)
DO 110 I=1,N
WRITE(IOUT,5999)I,CRIT(1,I),CRIT(2,I),CRIT(3,I)
110 CONTINUE
DO 115 I=1,NRING
WRITE(IOUT,6999)N+I,CRIT(1,N+I),CRIT(2,N+I),CRIT(3,N+I)
WRITE(IOUT,7999)NSRC(1,I),NSRC(2,I),NSRC(3,I),NSRC(4,I)
115 CONTINUE
DO 120 I=1,NCAGE
WRITE(IOUT,8999)NT-NCAGE+I,CRIT(1,NT-NCAGE+I),
$CRIT(2,NT-NCAGE+I),CRIT(3,NT-NCAGE+I)
120 CONTINUE
ENDIF
READ(INPT,*) IPHIPL,IT,IBETPTS
IDIV=2
IF(IMEGA.EQ.1)IDIV=4
IPhipl=Iphipl/IDIV
Iphipl=Iphipl*IDIV
It=It/IDIV
It=It*IDIV
ibetpts=ibetpts/2
ibetpts=ibetpts*2
If(IPHIPL.GT.MaxPhi)Write(Iout,3010)MaxPhi
If(IPHIPL.GT.MaxPhi)STOP 'Too many Phi Planes Requested'
If(IT.GT.MaxTHt)Write(Iout,3011)MaxTht
If(IT.GT.MaxTht)STOP 'Too many Theta Planes Requested'
If(IBETPTS.GT.MaxRad)Write(Iout,3012)MaxRad
If(IBETPTS.GT.MaxRad)STOP 'Too many Radial Points Requested'
C
IOPAIM(1)=NDOCUT
IOPAIM(2)=NNN
IOPAIM(3)=NPATH
IOPAIM(4)=NACC
IOPAIM(5)=INMAX
IOPAIM(6)=IDOAOM
IOPAIM(7)=IDOMAG
IOPAIM(8)=IMagM
IOPAIM(9)=NFBETA
OPAIM(1)=TINF
OPAIM(2)=THRESH1
OPAIM(3)=THRESH2
OPAIM(4)=CUTOFF
OPAIM(5)=DIST
OPAIM(6)=DMAX
C
IOPEGA(1)=NOSEC
IOPEGA(2)=ISTEP
IOPEGA(3)=NABMO
IOPEGA(4)=NACC
IOPEGA(6)=IDOAOM
IOPEGA(7)=IDOMAG
IOPEGA(8)=IMAGM
IOPEGA(9)=NFBETA
OPEGA(1)=TINF
OPEGA(2)=THRESH1
OPEGA(3)=THRESH2
OPEGA(4)=CUTOFF
OPEGA(5)=SIZE
OPEGA(6)=CTF
OPEGA(7)=STP
OPEGA(8)=FSTP
OPEGA(9)=SSTP
C
IF(IMEGA.EQ.0)THEN
READ(INPT,500,End=145)LINE
Call CaseUp(Line,UpStr,7)
If(UpStr(1:7).eq.OPTSTR)Then
Read(inpT,501) Line,NOPT
Call CaseUp(Line,UpStr,7)
If(UpStr(1:7).ne.IStr) STOP
$ 'INTEGER N Card Required when OPTION card is specified'
DO 125 I=1,NOPT
READ(INPT,*) NOP,IOPAIM(NOP)
If(NOP.eq.8.and.iopaim(8).eq.1)Read(Inpt,*)xgo,ygo,zgo
125 CONTINUE
Read(inpT,502,End=126) Line,NOPT
126 Call CaseUp(Line,UpStr,4)
If(UpStr(1:4).ne.RStr) STOP
$ 'REAL N Card Required when OPTION card is specified'
DO 130 I=1,NOPT
READ(INPT,*) NOP,OPAIM(NOP)
130 CONTINUE
Write(Iout,496)
Goto 146
Endif
ELSEIF(IMEGA.EQ.1)THEN
READ(INPT,500,END=145)LINE
Call CaseUp(Line,UpStr,7)
If(UpStr(1:7).eq.OPTSTR)Then
Read(inpT,501) Line,NOPT
Call CaseUp(Line,UpStr,7)
If(UpStr(1:7).ne.IStr) STOP
$ 'INTEGER N Card Required when OPTION card is specified'
DO 135 I=1,NOPT
READ(INPT,*) NOP,IOPEGA(NOP)
If(NOP.eq.8.and.iopega(8).eq.1)Read(Inpt,*)xgo,ygo,zgo
135 CONTINUE
Read(inpT,502,End=136) Line,NOPT
136 Call CaseUp(Line,UpStr,4)
If(UpStr(1:4).ne.RStr) STOP
$ 'REAL N Card Required when OPTION card is specified'
DO 140 I=1,NOPT
READ(INPT,*) NOP,OPEGA(NOP)
140 CONTINUE
Write(Iout,496)
Goto 146
Endif
Endif
C
145 Continue
Write(Iout,497)
146 Continue
C
IF(IMEGA.EQ.0)THEN
NDOCUT=IOPAIM(1)
NNN=IOPAIM(2)
NPATH=IOPAIM(3)
NACC=IOPAIM(4)
INMAX=IOPAIM(5)
IDOAOM=IOPAIM(6)
IDOMAG=IOPAIM(7)
IMAGM=IOPAIM(8)
NFBETA=IOPAIM(9)
TINF=OPAIM(1)
THRESH1=OPAIM(2)
THRESH2=OPAIM(3)
CUTOFF=OPAIM(4)
DIST=OPAIM(5)
DMAX=OPAIM(6)
ELSE
NOSEC=IOPEGA(1)
ISTEP=IOPEGA(2)
NABMO=IOPEGA(3)
NACC=IOPEGA(4)
IDOAOM=IOPEGA(6)
IDOMAG=IOPEGA(7)
IMAGM=IOPEGA(8)
NFBETA=IOPEGA(9)
TINF=OPEGA(1)
THRESH1=OPEGA(2)
THRESH2=OPEGA(3)
CUTOFF=OPEGA(4)
SIZE=OPEGA(5)
CTF=OPEGA(6)
STP=OPEGA(7)
FSTP=OPEGA(8)
SSTP=OPEGA(9)
If(Size.Ge.Tinf)Size=Tinf-Pt1
ENDIF
C
If(Imega.eq.1)Ndocut=0
lmo=nmo
If(Idomag.eq.1)Then
lmo=nmo/7
NDoCut=0
Write(iout,789)
NProps=NProps+18+9*Ncent
If(Nprops.gt.MaxPrp)Stop 'Redimension MaxPrp'
Endif
C
C figure out what type of wfn this is
C
If(IDOAOM.eq.1)Then
occmax=-Two
Occmin=Two
Do 1 I=1,LMO
If(po(i).gt.occmax)occmax=po(i)
If(po(i).lt.occmin)occmin=po(i)
1 Continue
If((OccMax.le.Thresh3) .and. Nfbeta.gt.0) ABNat = .True.
If(OccMax.ge.thresh3.and.occmax.lt.Two.and.occmin.lt.thresh4)
$RNAT=.true.
If(OccMin.eq.Two) RHF = .True.
If(OccMin.eq.One .and. OccMax.eq.Two) ROHF = .True.
If(OccMax.le.Thresh3.and.nfbeta.eq.0)Then
Write(iout,859)
Idoaom=0
Endif
Endif
C
IF (AT .EQ. ANUC) THEN
Write(Iout,861)
X = XNN
Y = YNN
Z = ZNN
NCRNT = -1
ELSE
DO 150 II = 1,NCENT
IF (ATNAM(II) .EQ. AT) THEN
Write(Iout,860)ATNAM(II)
X = XC(II)
Y = YC(II)
Z = ZC(II)
NCRNT = II
NAT = II
GOTO 155
END IF
150 CONTINUE
STOP ' ATOM NAME NOT FOUND '
END IF
155 CALL INTEG(BETA,IPHIPL,IT,CRIT,N,NRING,NCAGE,NSRC,IMEGA)
CALL RESULT
WRITE(IOUT,511)
C
END
DOUBLE PRECISION FUNCTION DASUM (N,DX,INCX) SHO18080
C SHO18090
C SPECIFICATIONS FOR ARGUMENTS SHO18100
DOUBLE PRECISION DX(1) SHO18110
INTEGER N,INCX SHO18120
C SPECIFICATIONS FOR LOCAL VARIABLES SHO18130
INTEGER I,M,MP1,NS SHO18140
C FIRST EXECUTABLE STATEMENT SHO18150
DASUM = 0.D0 SHO18160
IF (N.LE.0) RETURN SHO18170
IF (INCX.EQ.1) GO TO 10 SHO18180
C CODE FOR INCREMENTS NOT EQUAL TO 1. SHO18190
NS = N*INCX SHO18200
DO 5 I=1,NS,INCX SHO18210
DASUM = DASUM+DABS(DX(I)) SHO18220
5 CONTINUE SHO18230
RETURN SHO18240
C CODE FOR INCREMENTS EQUAL TO 1. SHO18250
C CLEAN-UP LOOP SO REMAINING VECTOR SHO18260
C LENGTH IS A MULTIPLE OF 6. SHO18270
10 M = N-(N/6)*6 SHO18280
IF (M.EQ.0) GO TO 20 SHO18290
DO 15 I=1,M SHO18300
DASUM = DASUM+DABS(DX(I)) SHO18310
15 CONTINUE SHO18320
IF (N.LT.6) RETURN SHO18330
20 MP1 = M+1 SHO18340
DO 25 I=MP1,N,6 SHO18350
DASUM = DASUM+DABS(DX(I))+DABS(DX(I+1))+DABS(DX(I+2)) SHO18360
1 +DABS(DX(I+3))+DABS(DX(I+4))+DABS(DX(I+5)) SHO18370
25 CONTINUE SHO18380
RETURN SHO18390
END SHO18400
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
DOUBLE PRECISION DX(1),DY(1),DA
INTEGER I,INCX,INCY,IXIY,M,MP1,N
IF(N.LE.0)RETURN
IF (DA .EQ. 0.0D0) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DY(IY) = DY(IY) + DA*DX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
20 M = MOD(N,4)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DY(I) = DY(I) + DA*DX(I)
30 CONTINUE
IF( N .LT. 4 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,4
DY(I) = DY(I) + DA*DX(I)
DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
DY(I + 3) = DY(I + 3) + DA*DX(I + 3)
50 CONTINUE
RETURN
END
SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
DOUBLE PRECISION DX(1),DY(1)
INTEGER I,INCX,INCY,IX,IY,M,MP1,N
IF(N.LE.0)RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DY(IY) = DX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
20 M = MOD(N,7)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DY(I) = DX(I)
30 CONTINUE
IF( N .LT. 7 ) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,7
DY(I) = DX(I)
DY(I + 1) = DX(I + 1)
DY(I + 2) = DX(I + 2)
DY(I + 3) = DX(I + 3)
DY(I + 4) = DX(I + 4)
DY(I + 5) = DX(I + 5)
DY(I + 6) = DX(I + 6)
50 CONTINUE
RETURN
END
DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
DOUBLE PRECISION DX(1),DY(1),DTEMP
INTEGER I,INCX,INCY,IX,IY,M,MP1,N
DDOT = 0.0D0
DTEMP = 0.0D0
IF(N.LE.0)RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DTEMP = DTEMP + DX(IX)*DY(IY)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
DDOT = DTEMP
RETURN
20 M = MOD(N,5)
IF( M .EQ. 0 ) GO TO 40
DO 30 I = 1,M
DTEMP = DTEMP + DX(I)*DY(I)
30 CONTINUE
IF( N .LT. 5 ) GO TO 60
40 MP1 = M + 1
DO 50 I = MP1,N,5
DTEMP = DTEMP + DX(I)*DY(I) + DX(I + 1)*DY(I + 1) +
* DX(I + 2)*DY(I + 2) + DX(I + 3)*DY(I + 3) + DX(I + 4)*DY(I + 4)
50 CONTINUE
60 DDOT = DTEMP
RETURN
END
SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
INTEGER LDA,N,IPVT(1),INFO
DOUBLE PRECISION A(LDA,1)
DOUBLE PRECISION T
INTEGER IDAMAX,J,K,KP1,L,NM1
INFO = 0
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KP1 = K + 1
L = IDAMAX(N-K+1,A(K,K),1) + K - 1
IPVT(K) = L
IF (A(L,K) .EQ. 0.0D0) GO TO 40
IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T
10 CONTINUE
T = -1.0D0/A(K,K)
CALL DSCAL(N-K,T,A(K+1,K),1)
DO 30 J = KP1, N
T = A(L,J)
IF (L .EQ. K) GO TO 20
A(L,J) = A(K,J)
A(K,J) = T
20 CONTINUE
CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = N
IF (A(N,N) .EQ. 0.0D0) INFO = N
RETURN
END
SUBROUTINE DGESL(A,LDA,N,IPVT,B,JOB)
INTEGER LDA,N,IPVT(1),JOB
DOUBLE PRECISION A(LDA,1),B(1)
DOUBLE PRECISION DDOT,T
INTEGER K,KB,L,NM1
NM1 = N - 1
IF (JOB .NE. 0) GO TO 50
IF (NM1 .LT. 1) GO TO 30
DO 20 K = 1, NM1
L = IPVT(K)
T = B(L)
IF (L .EQ. K) GO TO 10
B(L) = B(K)
B(K) = T
10 CONTINUE
CALL DAXPY(N-K,T,A(K+1,K),1,B(K+1),1)
20 CONTINUE
30 CONTINUE
DO 40 KB = 1, N
K = N + 1 - KB
B(K) = B(K)/A(K,K)
T = -B(K)
CALL DAXPY(K-1,T,A(1,K),1,B(1),1)
40 CONTINUE
GO TO 100
50 CONTINUE
DO 60 K = 1, N
T = DDOT(K-1,A(1,K),1,B(1),1)
B(K) = (B(K) - T)/A(K,K)
60 CONTINUE
IF (NM1 .LT. 1) GO TO 90
DO 80 KB = 1, NM1
K = N - KB
B(K) = B(K) + DDOT(N-K,A(K+1,K),1,B(K+1),1)
L = IPVT(K)
IF (L .EQ. K) GO TO 70
T = B(L)
B(L) = B(K)
B(K) = T
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
RETURN
END
DOUBLE PRECISION FUNCTION DNRM2 (N,DX,INCX) SHO18810
C SHO18820
C SPECIFICATIONS FOR ARGUMENTS SHO18830
INTEGER N,INCX SHO18840
DOUBLE PRECISION DX(1) SHO18850
C SPECIFICATIONS FOR LOCAL VARIABLES SHO18860
INTEGER I,J,NEXT,NN SHO18870
DOUBLE PRECISION CUTLO,CUTHI,SUM,XMAX,ZERO,ONE,HITEST SHO18880
DATA ZERO, ONE /0.0D0, 1.0D0/ SHO18890
DATA CUTLO, CUTHI / 8.232D-11, 1.304D19 / SHO18900
C FIRST EXECUTABLE STATEMENT SHO18910
IF (N.GT.0) GO TO 5 SHO18920
DNRM2 = ZERO SHO18930
GO TO 70 SHO18940
C SHO18950
5 ASSIGN 15 TO NEXT SHO18960
SUM = ZERO SHO18970
NN = N*INCX SHO18980
C BEGIN MAIN LOOP SHO18990
I = 1 SHO19000
10 GO TO NEXT, (15,20,35,40) SHO19010
15 IF (DABS(DX(I)).GT.CUTLO) GO TO 55 SHO19020
ASSIGN 20 TO NEXT SHO19030
XMAX = ZERO SHO19040
C PHASE 1. SUM IS ZERO SHO19050
20 IF (DX(I).EQ.ZERO) GO TO 65 SHO19060
IF (DABS(DX(I)).GT.CUTLO) GO TO 55 SHO19070
C PREPARE FOR PHASE 2. SHO19080
ASSIGN 35 TO NEXT SHO19090
GO TO 30 SHO19100
C PREPARE FOR PHASE 4. SHO19110
25 I = J SHO19120
ASSIGN 40 TO NEXT SHO19130
SUM = (SUM/DX(I))/DX(I) SHO19140
30 XMAX = DABS(DX(I)) SHO19150
GO TO 45 SHO19160
C PHASE 2. SUM IS SMALL. SCALE TO SHO19170
C AVOID DESTRUCTIVE UNDERFLOW. SHO19180
35 IF (DABS(DX(I)).GT.CUTLO) GO TO 50 SHO19190
C COMMON CODE FOR PHASES 2 AND 4. IN SHO19200
C PHASE 4 SUM IS LARGE. SCALE TO SHO19210
C AVOID OVERFLOW. SHO19220
40 IF (DABS(DX(I)).LE.XMAX) GO TO 45 SHO19230
SUM = ONE+SUM*(XMAX/DX(I))**2 SHO19240
XMAX = DABS(DX(I)) SHO19250
GO TO 65 SHO19260
C SHO19270
45 SUM = SUM+(DX(I)/XMAX)**2 SHO19280
GO TO 65 SHO19290
C PREPARE FOR PHASE 3. SHO19300
50 SUM = (SUM*XMAX)*XMAX SHO19310
C FOR REAL OR D.P. SET HITEST = SHO19320
C CUTHI/N FOR COMPLEX SET HITEST = SHO19330
C CUTHI/(2*N) SHO19340
55 HITEST = CUTHI/FLOAT(N) SHO19350
C PHASE 3. SUM IS MID-RANGE. NO SHO19360
C SCALING. SHO19370
DO 60 J=I,NN,INCX SHO19380
IF (DABS(DX(J)).GE.HITEST) GO TO 25 SHO19390
60 SUM = SUM+DX(J)**2 SHO19400
DNRM2 = DSQRT(SUM) SHO19410
GO TO 70 SHO19420
C SHO19430
65 CONTINUE SHO19440
I = I+INCX SHO19450
IF (I.LE.NN) GO TO 10 SHO19460
C END OF MAIN LOOP. COMPUTE SQUARE SHO19470
C ROOT AND ADJUST FOR SCALING. SHO19480
DNRM2 = XMAX*DSQRT(SUM) SHO19490
70 CONTINUE SHO19500
RETURN SHO19510
END SHO19520
SUBROUTINE DQRDC(X,LDX,N,P,QRAUX,JPVT,WORK,JOB)
INTEGER LDX,N,P,JOB
INTEGER JPVT(P)
DOUBLE PRECISION X(N,P),QRAUX(P),WORK(P)
C
C DQRDC USES HOUSEHOLDER TRANSFORMATIONS TO COMPUTE THE QR
C FACTORIZATION OF AN N BY P MATRIX X. COLUMN PIVOTING
C BASED ON THE 2-NORMS OF THE REDUCED COLUMNS MAY BE
C PERFORMED AT THE USERS OPTION.
C
C ON ENTRY
C
C X DOUBLE PRECISION(LDX,P), WHERE LDX .GE. N.
C X CONTAINS THE MATRIX WHOSE DECOMPOSITION IS TO BE
C COMPUTED.
C
C LDX INTEGER.
C LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C
C N INTEGER.
C N IS THE NUMBER OF ROWS OF THE MATRIX X.
C
C P INTEGER.
C P IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C
C JPVT INTEGER(P).
C JPVT CONTAINS INTEGERS THAT CONTROL THE SELECTION
C OF THE PIVOT COLUMNS. THE K-TH COLUMN X(K) OF X
C IS PLACED IN ONE OF THREE CLASSES ACCORDING TO THE
C VALUE OF JPVT(K).
C
C IF JPVT(K) .GT. 0, THEN X(K) IS AN INITIAL
C COLUMN.
C
C IF JPVT(K) .EQ. 0, THEN X(K) IS A FREE COLUMN.
C
C IF JPVT(K) .LT. 0, THEN X(K) IS A FINAL COLUMN.
C
C BEFORE THE DECOMPOSITION IS COMPUTED, INITIAL COLUMNS
C ARE MOVED TO THE BEGINNING OF THE ARRAY X AND FINAL
C COLUMNS TO THE END. BOTH INITIAL AND FINAL COLUMNS
C ARE FROZEN IN PLACE DURING THE COMPUTATION AND ONLY
C FREE COLUMNS ARE MOVED. AT THE K-TH STAGE OF THE
C REDUCTION, IF X(K) IS OCCUPIED BY A FREE COLUMN
C IT IS INTERCHANGED WITH THE FREE COLUMN OF LARGEST
C REDUCED NORM. JPVT IS NOT REFERENCED IF
C JOB .EQ. 0.
C
C WORK DOUBLE PRECISION(P).
C WORK IS A WORK ARRAY. WORK IS NOT REFERENCED IF
C JOB .EQ. 0.
C
C JOB INTEGER.
C JOB IS AN INTEGER THAT INITIATES COLUMN PIVOTING.
C IF JOB .EQ. 0, NO PIVOTING IS DONE.
C IF JOB .NE. 0, PIVOTING IS DONE.
C
C ON RETURN
C
C X X CONTAINS IN ITS UPPER TRIANGLE THE UPPER
C TRIANGULAR MATRIX R OF THE QR FACTORIZATION.
C BELOW ITS DIAGONAL X CONTAINS INFORMATION FROM
C WHICH THE ORTHOGONAL PART OF THE DECOMPOSITION
C CAN BE RECOVERED. NOTE THAT IF PIVOTING HAS
C BEEN REQUESTED, THE DECOMPOSITION IS NOT THAT
C OF THE ORIGINAL MATRIX X BUT THAT OF X
C WITH ITS COLUMNS PERMUTED AS DESCRIBED BY JPVT.
C
C QRAUX DOUBLE PRECISION(P).
C QRAUX CONTAINS FURTHER INFORMATION REQUIRED TO RECOVER
C THE ORTHOGONAL PART OF THE DECOMPOSITION.
C
C JPVT JPVT(K) CONTAINS THE INDEX OF THE COLUMN OF THE
C ORIGINAL MATRIX THAT HAS BEEN INTERCHANGED INTO
C THE K-TH COLUMN, IF PIVOTING WAS REQUESTED.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C G.W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C
C DQRDC USES THE FOLLOWING FUNCTIONS AND SUBPROGRAMS.
C
C BLAS DAXPY,DDOT,DSCAL,DSWAP,DNRM2
C FORTRAN DABS,DMAX1,MIN0,DSQRT
C
C INTERNAL VARIABLES
C
INTEGER J,JP,L,LP1,LUP,MAXJ,PL,PU
DOUBLE PRECISION MAXNRM,DNRM2,TT
DOUBLE PRECISION DDOT,NRMXL,T
LOGICAL NEGJ,SWAPJ
C
C
PL = 1
PU = 0
IF (JOB .EQ. 0) GO TO 60