forked from qtaim/aimpac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrdvecpg.f
1611 lines (1562 loc) · 42.6 KB
/
grdvecpg.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
PROGRAM GRDVEC
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
CHARACTER*80 LINE,TITLE
parameter (radian=.01745329251994329576d0)
CHARACTER*40 WVEC,WFN,WGVP,file
CHARACTER*7 WORD
CHARACTER*4 FVEC , FWFN , FGVP
C
DIMENSION A(3,3),C(3,60),CR(2),CT(3),CX(3),IAR(60),IR(60)
DIMENSION NUP(60),NDN(60),ORG(3,60),SV(3),XS(3,60),XY(2)
DIMENSION H(3,3),EUL(3),F(3)
common /pepe/ ipluma
C
data FVEC /'.vec'/, FWFN /'.wfn'/, FGVP /'.gvp'/
C
COMMON CO(30000),IC(30000),MODE,NCENT,NMO,NPRIMS
COMMON /OFFSET/ ITYPE,ICENT,KATOM,IEORB,IE,IMO,ICHARG,IXC,IYC,IZC,
+ IXX, IYY, IZZ,IXS,IYS,IZS,IRR,IR2,IP,IPSI,IGX,IGY,IGZ,ID2,IGXX,
+ IGXY,IGXZ,IGYY,IGYZ,IGZZ
COMMON /TRANS/ A,CR,CX,CT,SCAL,IPROJ
COMMON /UNITS/ ISRF,IVEC,IOUT,IWFN,IDBG
C
do i=1,60
ir(i)=0
nup(i)=0
enddo
IWFN =10
IVEC =15
IOUT =6
CALL MAKNAME (1,WVEC,ILEN,FVEC)
IF (ILEN .EQ. 0) STOP 'usage: grdvec vecfile wfnfile xw|psfile'
CALL MAKNAME (2,WFN,ILEN,FWFN)
IF (ILEN .EQ. 0) STOP 'usage: grdvec vecfile wfnfile xw|psfile'
CALL MAKNAME(3,file,ILEN,' ')
IF (ILEN .EQ. 0) STOP 'usage: grdvec vecfile wfnfile xw|psfile'
if (file(1:ilen).eq.'xw') then
file='/xwindow'
else
file=file(1:ilen)//'.ps/VPS'
endif
C
OPEN (IVEC,FILE=WVEC)
OPEN (IWFN,FILE=WFN)
C
CALL RDWFN
C
C TITLE
C
READ (IVEC,1000) TITLE
C
C PLOT:
C
READ (IVEC,1010) LINE
LPST = 8
DO 90 I = 1,2
IF (NUMBER(LINE,LPST,NUM,XY(I)) .GT. 0) GOTO 1990
90 CONTINUE
C
C DETERMINE CENTER OF LOCAL FRAME (I.E. USER DEFINED CENTER OF MOLECULE)
C
CR(1) = XY(1)/2.0D0
CR(2) = cr(1)
SCAL = 1.0
C
CALL PLOTS2 (sngl(xy(1)),sngl(xy(1)),file,TITLE)
C
C CENTER OF PLOT
C
READ (IVEC,1010) LINE
LPST = 8
DO 100 I = 1,3
IF (NUMBER(LINE,LPST,NUM,CX(I)) .GT. 0) GOTO 2000
100 CONTINUE
C
C WALKING PARAMETERS
C
c READ (IVEC,*) WORD,R1,R2,R3,ENDPT,IPROJ,IINC
READ (IVEC,'(a)') line
word=line(1:7)
read(line(7:),*) R1,R2,R3,ENDPT,IPROJ,IINC
C
C DEFINE PLANE
C
READ (IVEC,1010) LINE
LPST = 8
IF (NUMBER(LINE,LPST,IEG,DNUM) .GT. 0) GOTO 2070
IF (IEG .EQ. 0) THEN
J = 1
110 IF (NUMBER(LINE,LPST,IR(J),DNUM) .GT. 0) GOTO 120
J = J + 1
GOTO 110
C
C DECIDE IF DUMMY ATOMS WERE USED AND READ IN THEIR COORDINATES
C TO XS(3,N)
C
120 DO 130 I = 1,J
IF (IR(I) .LT. 0) THEN
LPST = 8
READ (IVEC,1010) LINE
DO 140 K = 1,3
IF (NUMBER(LINE,LPST,NUM,XS(K,ABS(IR(I)))) .GT. 0)
+ GOTO 2010
140 CONTINUE
END IF
130 CONTINUE
C
C GENERATE ROTATION MATRIX
C
DO 170 I = 1,NCENT
C(1,I) = CO(IXC+I)
C(2,I) = CO(IYC+I)
C(3,I) = CO(IZC+I)
170 CONTINUE
C
CALL GROCKLE(NCENT,C,IR,XS,A)
C
ELSE IF (IEG .EQ. 1) THEN
DO 125 I = 1,3
IF (NUMBER(LINE,LPST,NUM,EUL(I)) .GT. 0) GOTO 2080
125 CONTINUE
C
CALL EULER (EUL,A)
C
END IF
C
C NUMBER OF ORIGINS
C
READ (IVEC,1010) LINE
LPST = 8
IF (NUMBER(LINE,LPST,NORG,DNUM) .GT. 0) GOTO 2020
C
C GET ORIGINS
C
DO 150 I = 1,NORG
READ (IVEC,*) (ORG(J,I),J=1,3),IAR(I),NUP(I),NDN(I)
150 CONTINUE
C
C TRANSFORM CENTER OF PLOT TO CENTER OF PLOTTING FRAME
C
CT(1) = A(1,1)*CX(1) + A(2,1)*CX(2) + A(3,1)*CX(3)
CT(2) = A(1,2)*CX(1) + A(2,2)*CX(2) + A(3,2)*CX(3)
CT(3) = A(1,3)*CX(1) + A(2,3)*CX(2) + A(3,3)*CX(3)
C
C PLOT ATOM POSITIONS
C
DO 180 I = 1,NCENT
XX = A(1,1)*CO(IXC+I)+A(2,1)*CO(IYC+I)+A(3,1)*CO(IZC+I)-CT(1)
YY = A(1,2)*CO(IXC+I)+A(2,2)*CO(IYC+I)+A(3,2)*CO(IZC+I)-CT(2)
ZZ = A(1,3)*CO(IXC+I)+A(2,3)*CO(IYC+I)+A(3,3)*CO(IZC+I)-CT(3)
CALL NUCLEI(XX,YY,ZZ)
180 CONTINUE
C
C LOOP OVER EACH ORIGIN
C
DO 190 I = 1,NORG
C
C FIND ORIGIN'S COORDINATES IN PLOT'S FRAME OF REFERENCE
C
X = A(1,1)*ORG(1,I)+A(2,1)*ORG(2,I)+A(3,1)*ORG(3,I)-CT(1)
Y = A(1,2)*ORG(1,I)+A(2,2)*ORG(2,I)+A(3,2)*ORG(3,I)-CT(2)
Z = A(1,3)*ORG(1,I)+A(2,3)*ORG(2,I)+A(3,3)*ORG(3,I)-CT(3)
C
C THIS ORIGIN IS A (2,-2) ATTRACTOR IN THE PLANE
C
IF (IAR(I) .EQ. 0) THEN
C
ipluma=2
PATHA = 360.0D0/DFLOAT(NDN(I))
DO 200 J = 1,NDN(I)
C
C FIND STARTING POINT FOR EACH GRADIENT PATH
C
ANG = DFLOAT((J-1))*PATHA
X0 = X + R1*COS(ANG*radian)
Y0 = Y + R1*SIN(ANG*radian)
Z0 = 0.0D0
CALL TRUDGE(X0,Y0,Z0,0,IINC,ENDPT)
200 CONTINUE
C
C THIS ORIGIN IS A (2,0) REPELLOR IN THIS PLANE
C
ELSE IF (IAR(I) .EQ. 1) THEN
C
C CALL TO GET HESSIAN AND GRADIENT AT ORIGIN
C
ipluma=5
X0 = ORG(1,I)
Y0 = ORG(2,I)
Z0 = ORG(3,I)
CALL HESS(X0,Y0,Z0,F,H)
C
C CALL TO GET DESIRED SHIFT VECTOR FROM HESSIAN
C TAKING INTO ACCOUNT WHETHER OR NOT PROJECTIONS
C OUT OF THE PLANE ARE TO BE ALLOWED
C
IF (NUP(I) .GT. 0) THEN
CALL SHFTVC(A,F,H,1,SV)
X0 = X+A(1,1)*SV(1)*R2+A(2,1)*SV(2)*R2+A(3,1)*SV(3)*R2
Y0 = Y+A(1,2)*SV(1)*R2+A(2,2)*SV(2)*R2+A(3,2)*SV(3)*R2
IF (IPROJ .EQ. 0) THEN
Z0 = 0.0D0
ELSE
Z0 = Z+A(1,3)*SV(1)*R2+A(2,3)*SV(2)*R2+A(3,3)*SV(3)*R2
END IF
CALL TRUDGE(X0,Y0,Z0,1,IINC,ENDPT)
X0 = X-A(1,1)*SV(1)*R2-A(2,1)*SV(2)*R2-A(3,1)*SV(3)*R2
Y0 = Y-A(1,2)*SV(1)*R2-A(2,2)*SV(2)*R2-A(3,2)*SV(3)*R2
IF (IPROJ .EQ. 0) THEN
Z0 = 0.0D0
ELSE
Z0 = Z-A(1,3)*SV(1)*R2-A(2,3)*SV(2)*R2-A(3,3)*SV(3)*R2
END IF
CALL TRUDGE(X0,Y0,Z0,1,IINC,ENDPT)
END IF
IF (NDN(I) .GT. 0) THEN
CALL SHFTVC(A,F,H,0,SV)
X0 = X+A(1,1)*SV(1)*R3+A(2,1)*SV(2)*R3+A(3,1)*SV(3)*R3
Y0 = Y+A(1,2)*SV(1)*R3+A(2,2)*SV(2)*R3+A(3,2)*SV(3)*R3
IF (IPROJ .EQ. 0) THEN
Z0 = 0.0D0
ELSE
Z0 = Z+A(1,3)*SV(1)*R3+A(2,3)*SV(2)*R3+A(3,3)*SV(3)*R3
END IF
CALL TRUDGE(X0,Y0,Z0,0,IINC,ENDPT)
X0 = X-A(1,1)*SV(1)*R3-A(2,1)*SV(2)*R3-A(3,1)*SV(3)*R3
Y0 = Y-A(1,2)*SV(1)*R3-A(2,2)*SV(2)*R3-A(3,2)*SV(3)*R3
IF (IPROJ .EQ. 0) THEN
Z0 = 0.0D0
ELSE
Z0 = Z-A(1,3)*SV(1)*R3-A(2,3)*SV(2)*R3-A(3,3)*SV(3)*R3
END IF
CALL TRUDGE(X0,Y0,Z0,0,IINC,ENDPT)
END IF
END IF
C
190 CONTINUE
C
CALL PLOT (0.,0.,999)
GOTO 4999
C
C FORMATS
C
1000 FORMAT(7X,A70)
1010 FORMAT(A80)
1990 WRITE (IOUT,1995)
1995 FORMAT(' ERROR IN PLOT CARD ')
GOTO 4999
2000 WRITE (IOUT,2005)
2005 FORMAT(' ERROR IN CENTER DEFINITION CARD ')
GOTO 4999
2010 WRITE (IOUT,2015)
2015 FORMAT(' ERROR IN DUMMY ATOM COORDINATES ')
GOTO 4999
2020 WRITE (IOUT,2025)
2025 FORMAT(' ERROR IN CARD GIVING NUMBER OF ORIGINS ')
GOTO 4999
2040 WRITE (IOUT,2045)
2045 FORMAT(' ERROR IN ORIGIN TYPE DECLARATION ')
GOTO 4999
2050 WRITE (IOUT,2055)
2055 FORMAT(' ERROR IN NUMBER OF ASCENDING GRADIENT VECTORS ')
GOTO 4999
2060 WRITE (IOUT,2065)
2065 FORMAT(' ERROR IN NUMBER OF DESENDING GRADIENT VECTORS ')
GOTO 4999
2070 WRITE (IOUT,2075)
2075 FORMAT(' ERROR IN ORIENTATION METHOD ')
GOTO 4999
2080 WRITE (IOUT,2085)
2085 FORMAT( 'ERROR IN EULER ANGLES CARD ')
GOTO 4999
3000 WRITE (6,3005)
3005 FORMAT(' ERROR IN ORIGIN COORDINATES ')
GOTO 4999
3010 WRITE (6,3015)
3015 FORMAT(' ERROR IN ATTRACTOR TYPE ')
GOTO 4999
3020 WRITE (6,3025)
3025 FORMAT(' ERROR IN NUMBER OF ASCENDING PATHS ')
GOTO 4999
3030 WRITE (6,3035)
3035 FORMAT(' ERROR IN NUMBER OF ASCENDING PATHS ')
GOTO 4999
3040 WRITE (6,3045)
3045 FORMAT(' ERROR IN PARAMETER CARD ')
4999 END
SUBROUTINE EULER (E,A)
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C CALCULATE THE ROTATION MATRICES USING
C EULER ANGLES
C
DIMENSION E(3), A(9)
C
DATA RADIAN /0.01745329252D0/
C
E1 = E(1)*RADIAN
E2 = E(2)*RADIAN
E3 = E(3)*RADIAN
C
SA = SIN(E1)
SB = SIN(E2)
SC = SIN(E3)
CA = COS(E1)
CB = COS(E2)
CC = COS(E3)
C
C A(1) = CC*CB*CA - SC*SA
C A(2) = -SC*CB*CA - CC*SA
C A(3) = SB*CA
C A(4) = CC*CB*SA + SC*CA
C A(5) = -SC*CB*SA + CC*CA
C A(6) = SB*SA
C A(7) = -CC*SB
C A(8) = SC*SB
C A(9) = CB
C
A(1) = CC*CA - CB*SA*SC
A(2) = CC*SA + CB*CA*SC
A(3) = SC*SB
A(4) = -SC*CA - CB*SA*CC
A(5) = -SC*SA + CB*CA*CC
A(6) = CC*SB
A(7) = SB*SA
A(8) = -SB*CA
A(9) = CB
C
RETURN
END
SUBROUTINE GAUS2
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
C FOR GAUSSIAN WAVEFUNCTIONS ONLY. CALCULATES AT A GIVEN POINT
C THE VALUE OF EACH MOLECULAR ORBITAL AND THE MO GRADIENT VECTOR
C COMPONENTS.
C
COMMON CO(30000),IC(30000),MODE,NCENT,NMO,NPRIMS
C
COMMON /OFFSET/ ITYPE,ICENT,KATOM,IEORB,IE,IMO,ICHARG,IXC,
+ IYC,IZC,IXX,IYY,IZZ,IXS,IYS,IZS,IRR,IR2,IP,IPSI,IGX,IGY,IGZ,
+ ID2,IGXX,IGXY,IGXZ,IGYY,IGYZ,IGZZ
C
DATA ZERO /0.0D0/, ONE /1.0D0/, TWO /2.0D0/, THREE /3.0D0/
C
DO 100 J = 1,NMO
CO(IPSI+J) = ZERO
CO(IGX+J) = ZERO
CO(IGY+J) = ZERO
CO(IGZ+J) = ZERO
100 CONTINUE
C
DO 200 I = 1,NPRIMS
EE = CO(IE+I)*TWO
X = CO(IXX+IC(ICENT+I))
Y = CO(IYY+IC(ICENT+I))
Z = CO(IZZ+IC(ICENT+I))
IF (CO(IE+I)*CO(IR2+IC(ICENT+I)) .GT. 170.0D0) THEN
EXPON = ZERO
ELSE
EXPON = DEXP(-CO(IE+I)*CO(IR2+IC(ICENT+I)))
ENDIF
EXPEE = EXPON*EE
IF (EXPEE.LT.1.D-25) EXPEE = ZERO
IF (EXPON.LT.1.D-25) EXPON = ZERO
C
C S
C
IF (IC(ITYPE+I) .EQ. 1) THEN
BF = EXPON
GX = -EXPEE*X
GY = -EXPEE*Y
GZ = -EXPEE*Z
C
C X
C
ELSE IF (IC(ITYPE+I) .EQ. 2) THEN
BF = EXPON*X
GX = EXPON*(ONE-EE*X*X)
GY = -EXPEE*X*Y
GZ = -EXPEE*X*Z
C
C Y
C
ELSE IF (IC(ITYPE+I) .EQ. 3) THEN
BF = EXPON*Y
GX = -EXPEE*Y*X
GY = EXPON*(ONE-EE*Y*Y)
GZ = -EXPEE*Y*Z
C
C Z
C
ELSE IF (IC(ITYPE+I) .EQ. 4) THEN
BF = EXPON*Z
GX = -EXPEE*Z*X
GY = -EXPEE*Z*Y
GZ = EXPON*(ONE-EE*Z*Z)
C
C XX
C
ELSE IF (IC(ITYPE+I) .EQ. 5) THEN
BF = EXPON*X*X
GX = -EXPEE*X*X*X + TWO*EXPON*X
GY = -EXPEE*X*X*Y
GZ = -EXPEE*X*X*Z
C
C YY
C
ELSE IF (IC(ITYPE+I) .EQ. 6) THEN
BF = EXPON*Y*Y
GX = -EXPEE*Y*Y*X
GY = -EXPEE*Y*Y*Y + TWO*EXPON*Y
GZ = -EXPEE*Y*Y*Z
C
C ZZ
C
ELSE IF (IC(ITYPE+I) .EQ. 7) THEN
BF = EXPON*Z*Z
GX = -EXPEE*Z*Z*X
GY = -EXPEE*Z*Z*Y
GZ = -EXPEE*Z*Z*Z + TWO*EXPON*Z
C
C XY
C
ELSE IF (IC(ITYPE+I) .EQ. 8) THEN
BF = EXPON*X*Y
GX = -EXPEE*X*Y*X + EXPON*Y
GY = -EXPEE*X*Y*Y + EXPON*X
GZ = -EXPEE*X*Y*Z
C
C XZ
C
ELSE IF (IC(ITYPE+I) .EQ. 9) THEN
BF = EXPON*X*Z
GX = -EXPEE*X*Z*X + EXPON*Z
GY = -EXPEE*X*Z*Y
GZ = -EXPEE*X*Z*Z + EXPON*X
C
C YZ
C
ELSE IF (IC(ITYPE+I) .EQ. 10) THEN
BF = EXPON*Y*Z
GX = -EXPEE*Y*Z*X
GY = -EXPEE*Y*Z*Y + EXPON*Z
GZ = -EXPEE*Y*Z*Z + EXPON*Y
C
C XXX
C
ELSE IF (IC(ITYPE+I) .EQ. 11) THEN
BF = EXPON*X*X*X
GX = -EXPON*X*X*EE*X*X + THREE*EXPON*X*X
GY = -EXPON*X*X*EE*X*Y
GZ = -EXPON*X*X*EE*X*Z
C
C YYY
C
ELSE IF (IC(ITYPE+I) .EQ. 12) THEN
BF = EXPON*Y*Y*Y
GX = -EXPON*Y*Y*EE*Y*X
GY = -EXPON*Y*Y*EE*Y*Y + THREE*EXPON*Y*Y
GZ = -EXPON*Y*Y*EE*Y*Z
C
C ZZZ
C
ELSE IF (IC(ITYPE+I) .EQ. 13) THEN
BF = EXPON*Z*Z*Z
GX = -EXPON*Z*Z*EE*Z*X
GY = -EXPON*Z*Z*EE*Z*Y
GZ = -EXPON*Z*Z*EE*Z*Z + THREE*EXPON*Z*Z
C
C XXY
C
ELSE IF (IC(ITYPE+I) .EQ. 14) THEN
BF = EXPON*X*X*Y
GX = -EXPON*X*Y*EE*X*X + TWO*EXPON*X*Y
GY = -EXPON*X*X*EE*Y*Y + ONE*EXPON*X*X
GZ = -EXPON*X*X*EE*Y*Z
C
C XXZ
C
ELSE IF (IC(ITYPE+I) .EQ. 15) THEN
BF = EXPON*X*X*Z
GX = -EXPON*X*Z*EE*X*X + TWO*EXPON*X*Z
GY = -EXPON*X*X*EE*Y*Z
GZ = -EXPON*X*X*EE*Z*Z + ONE*EXPON*X*X
C
C YYZ
C
ELSE IF (IC(ITYPE+I) .EQ. 16) THEN
BF = EXPON*Y*Y*Z
GX = -EXPON*Y*Y*EE*X*Z
GY = -EXPON*Y*Z*EE*Y*Y + TWO*EXPON*Y*Z
GZ = -EXPON*Y*Y*EE*Z*Z + ONE*EXPON*Y*Y
C
C XYY
C
ELSE IF (IC(ITYPE+I) .EQ. 17) THEN
BF = EXPON*X*Y*Y
GX = -EXPON*Y*Y*EE*X*X + ONE*EXPON*Y*Y
GY = -EXPON*X*Y*EE*Y*Y + TWO*EXPON*X*Y
GZ = -EXPON*Y*Y*EE*X*Z
C
C XZZ
C
ELSE IF (IC(ITYPE+I) .EQ. 18) THEN
BF = EXPON*X*Z*Z
GX = -EXPON*Z*Z*EE*X*X + ONE*EXPON*Z*Z
GY = -EXPON*Z*Z*EE*X*Y
GZ = -EXPON*X*Z*EE*Z*Z + TWO*EXPON*X*Z
C
C YZZ
C
ELSE IF (IC(ITYPE+I) .EQ. 19) THEN
BF = EXPON*Y*Z*Z
GX = -EXPON*Z*Z*EE*X*Y
GY = -EXPON*Z*Z*EE*Y*Y + ONE*EXPON*Z*Z
GZ = -EXPON*Y*Z*EE*Z*Z + TWO*EXPON*Y*Z
C
C XYZ
C
ELSE IF (IC(ITYPE+I) .EQ. 20) THEN
BF = EXPON*X*Y*Z
GX = -EXPON*Y*Z*EE*X*X + ONE*EXPON*Y*Z
GY = -EXPON*X*Z*EE*Y*Y + ONE*EXPON*X*Z
GZ = -EXPON*X*Y*EE*Z*Z + ONE*EXPON*X*Y
C
END IF
C
C END F-FUNCTIONS
C
C CALCULATE DENSITY AND GRADIENT COMPONENTS FOR EACH MO.
C
DO 200 J = 1,NMO
CO(IPSI+J) = CO(IPSI+J) + CO(IMO+NPRIMS*(J-1)+I)*BF
CO(IGX+J) = CO(IGX+J) + CO(IMO+NPRIMS*(J-1)+I)*GX
CO(IGY+J) = CO(IGY+J) + CO(IMO+NPRIMS*(J-1)+I)*GY
CO(IGZ+J) = CO(IGZ+J) + CO(IMO+NPRIMS*(J-1)+I)*GZ
200 CONTINUE
RETURN
END
SUBROUTINE GAUS4
C+++
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C+++
C
C FOR GAUSSIAN WAVEFUNCTIONS ONLY. CALCULATES AT A GIVEN POINT
C THE VALUE OF EACH MOLECULAR ORBITAL AND THE MO GRADIENT VECTOR
C COMPONENTS.
C
COMMON /OFFSET/ ITYPE,ICENT,KATOM,IEORB,IE,IMO,ICHARG,IXC,IYC,IZC,
+ IXX, IYY, IZZ,IXS,IYS,IZS,IRR,IR2,IP,IPSI,IGX,IGY,IGZ,ID2,
+ IGXX,IGXY,IGXZ,IGYY,IGYZ,IGZZ
COMMON CO(30000),IC(30000),MODE,NCENT,NMO,NPRIMS
C
DO 310 J=1,NMO
CO(IPSI+J)=0.0
CO(IGX+J)=0.0
CO(IGY+J)=0.0
CO(IGZ+J)=0.0
CO(IGXX+J)=0.0
CO(IGXY+J)=0.0
CO(IGXZ+J)=0.0
CO(IGYY+J)=0.0
CO(IGYZ+J)=0.0
CO(IGZZ+J)=0.
310 CONTINUE
DO 360 I=1,NPRIMS
K=IC(ICENT+I)
EE=CO(IE+I)*2.0
X=CO(IXX+K)
Y=CO(IYY+K)
Z=CO(IZZ+K)
CCOO=-CO(IE+I)*CO(IR2+K)
EXPON=0.D0
IF(CCOO.GT.-170.D0) EXPON=DEXP(CCOO)
XX=X*X
XY=X*Y
XZ=X*Z
YY=Y*Y
YZ=Y*Z
ZZ=Z*Z
EXPEE=EXPON*EE
IF (EXPON.LT.1.D-25) EXPON = 0.D0
IF (EXPEE.LT.1.D-25) EXPEE = 0.D0
GO TO (361,362,363,364,365,366,367,368,369,370) IC(ITYPE+I)
C
C S
C
361 CONTINUE
BF=EXPON
GX=-EXPEE*X
GY=-EXPEE*Y
GZ=-EXPEE*Z
GXX=-GX*X*EE-EXPEE
GXY=-GX*EE*Y
GXZ=-GX*EE*Z
GYY=-GY*Y*EE-EXPEE
GYZ=-GY*EE*Z
GZZ=-GZ*Z*EE-EXPEE
GO TO 340
C
C X
C
362 CONTINUE
BF=EXPON*X
Q2=-EXPEE*X
GX=EXPON*(1.0-EE*XX)
GY=Q2*Y
GZ=Q2*Z
Q2=EE*X
Q1=Q2*X
GXX=EXPEE*X*(Q1-3.)
GXY=EXPEE*Y*(Q1-1.)
GXZ=EXPEE*Z*(Q1-1.)
GYY=EXPEE*(Q2*YY-X)
GYZ=EXPEE*Q2*YZ
GZZ=EXPEE*(Q2*ZZ-X)
GO TO 340
C
C Y
C
363 CONTINUE
BF=EXPON*Y
Q2=-EXPEE*Y
GX=Q2*X
GY=EXPON*(1.0-EE*YY)
GZ=Q2*Z
Q2=EE*Y
Q1=Q2*Y
GXX=EXPEE*(Q2*XX-Y)
GXY=EXPEE*X*(Q1-1.)
GXZ=EXPEE*Q2*XZ
GYY=EXPEE*Y*(Q1-3.)
GYZ=EXPEE*Z*(Q1-1.)
GZZ=EXPEE*(Q2*ZZ-Y)
GO TO 340
C
C Z
C
364 CONTINUE
BF=EXPON*Z
Q2=-EXPEE*Z
GX=Q2*X
GY=Q2*Y
GZ=EXPON*(1.0-EE*ZZ)
Q2=EE*Z
Q1=Q2*Z
GXX=EXPEE*(Q2*XX-Z)
GXY=EXPEE*Q2*XY
GXZ=EXPEE*X*(Q1-1.)
GYY=EXPEE*(Q2*YY-Z)
GYZ=EXPEE*Y*(Q1-1.)
GZZ=EXPEE*Z*(Q1-3.)
GO TO 340
C
C XX
C
365 CONTINUE
BF=EXPON*XX
Q2=-BF*EE
GX= X*(Q2+2.*EXPON)
GY= Y*Q2
GZ= Z*Q2
Q1=EE*XX
GXX=(2.+(Q1-5.)*Q1)*EXPON
GXY=EXPEE*XY*(Q1-2.)
GXZ=EXPEE*XZ*(Q1-2.)
GYY=EXPON*Q1*(EE*YY-1.)
GYZ=EXPEE*Q1*YZ
GZZ=EXPON*Q1*(EE*ZZ-1.)
GO TO 340
C
C YY
C
366 CONTINUE
BF=EXPON*YY
Q2=-BF*EE
GX= X*Q2
GY= Y*(Q2+2.*EXPON)
GZ= Z*Q2
Q1=EE*YY
GXX=EXPON*Q1*(EE*XX-1.)
GXY=EXPEE*XY*(Q1-2.)
GXZ=EXPEE*XZ*Q1
GYY=EXPON*(2.+(Q1-5.)*Q1)
GYZ=EXPEE*YZ*(Q1-2.)
GZZ=EXPON*Q1*(EE*ZZ-1.)
GO TO 340
C
C ZZ
C
367 CONTINUE
BF=EXPON*ZZ
Q2=-BF*EE
GX= X*Q2
GY= Y*Q2
GZ= Z*(Q2+2.*EXPON)
Q1=EE*ZZ
GXX=EXPON*Q1*(EE*XX-1.)
GXY=EXPEE*Q1*XY
GXZ=EXPEE*XZ*(Q1-2.)
GYY=EXPON*Q1*(EE*YY-1.)
GYZ=EXPEE*YZ*(Q1-2.)
GZZ=EXPON*(2.+(Q1-5.)*Q1)
GO TO 340
C
C XY
C
368 Q1= EXPON*X
BF=Q1*Y
Q3=-BF*EE
GX= Q3*X + EXPON*Y
GY= Q3*Y + Q1
GZ= Q3*Z
Q1=EE*XX
Q2=EE*YY
GXX=EXPEE*XY*(Q1-3.)
GXY=(Q1-1.)*(Q2-1.)*EXPON
GXZ=EXPEE*YZ*(Q1-1.)
GYY=EXPEE*XY*(Q2-3.)
GYZ=EXPEE*XZ*(Q2-1.)
GZZ=EXPEE*XY*(EE*ZZ-1.)
GO TO 340
C
C XZ
C
369 Q1= EXPON*Z
BF=Q1*X
Q3=-BF*EE
GX= Q3*X + Q1
GY= Q3*Y
GZ= Q3*Z + EXPON*X
Q1=EE*XX
Q2=EE*ZZ
GXX=EXPEE*XZ*(Q1-3.)
GXY=EXPEE*YZ*(Q1-1.)
GXZ=EXPON*(Q1-1.)*(Q2-1.)
GYY=EXPEE*XZ*(EE*YY-1.)
GYZ=EXPEE*XY*(Q2-1.)
GZZ=EXPEE*XZ*(Q2-3.)
GO TO 340
C
C YZ
C
370 Q1= EXPON*Y
BF=Q1*Z
Q3=-BF*EE
GX= Q3*X
GY= Q3*Y + EXPON*Z
GZ= Q3*Z + Q1
Q1=EE*YY
Q2=EE*ZZ
GXX=EXPEE*YZ*(EE*XX-1.)
GXY=EXPEE*XZ*(Q1-1.)
GXZ=EXPEE*XY*(Q2-1.)
GYY=EXPEE*YZ*(Q1-3.)
GYZ=(Q1-1.)*(Q2-1.)*EXPON
GZZ=EXPEE*YZ*(Q2-3.)
340 CONTINUE
C
C CALCULATE DENSITY AND GRADIENT COMPONENTS FOR EACH MO.
C
DO 360 J=1,NMO
CIJ=CO(IMO+NPRIMS*(J-1)+I)
CO(IPSI+J)=CO(IPSI+J)+CIJ*BF
CO(IGX+J)=CO(IGX+J)+CIJ*GX
CO(IGY+J)=CO(IGY+J)+CIJ*GY
CO(IGZ+J)=CO(IGZ+J)+CIJ*GZ
CO(IGXX+J)=CO(IGXX+J)+CIJ*GXX
CO(IGXY+J)=CO(IGXY+J)+CIJ*GXY
CO(IGXZ+J)=CO(IGXZ+J)+CIJ*GXZ
CO(IGYY+J)=CO(IGYY+J)+CIJ*GYY
CO(IGYZ+J)=CO(IGYZ+J)+CIJ*GYZ
CO(IGZZ+J)=CO(IGZZ+J)+CIJ*GZZ
360 CONTINUE
RETURN
END
SUBROUTINE GROCKLE (N, X, IR, S, E)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
DIMENSION X(3,N), S(3,N), C(3), E(3,3), EV(3), R(3,3)
INTEGER IR(N)
PARAMETER (ZERO = 0.0D0)
C
C ZERO OUT CENTROID AND EIGENVECTORS
C
C(1) = ZERO
C(2) = ZERO
C(3) = ZERO
E(1,1) = ZERO
E(1,2) = ZERO
E(1,3) = ZERO
E(2,2) = ZERO
E(2,3) = ZERO
E(3,3) = ZERO
C
C CENTROID OF FRAGMENT
C
M = ZERO
DO 100 I = 1, N
IF (IR(I) .GT. 0) THEN
C(1) = C(1) + X(1,IR(I))
C(2) = C(2) + X(2,IR(I))
C(3) = C(3) + X(3,IR(I))
M = M + 1
ELSE IF (IR(I) .LT. 0) THEN
C(1) = C(1) + S(1,-IR(I))
C(2) = C(2) + S(2,-IR(I))
C(3) = C(3) + S(3,-IR(I))
M = M + 1
END IF
100 CONTINUE
C
DD = 1.0D0/DFLOAT(M)
C(1) = DD*C(1)
C(2) = DD*C(2)
C(3) = DD*C(3)
C
C CALCULATE INERTIAL MATRIX.
C
DO 200 I = 1, N
IF (IR(I) .GT. 0) THEN
X1 = X(1,IR(I)) - C(1)
X2 = X(2,IR(I)) - C(2)
X3 = X(3,IR(I)) - C(3)
ELSE IF (IR(I) .LT. 0) THEN
X1 = S(1,-IR(I)) - C(1)
X2 = S(2,-IR(I)) - C(2)
X3 = S(3,-IR(I)) - C(3)
END IF
E(1,1) = E(1,1) + X2**2 + X3**2
E(2,2) = E(2,2) + X1**2 + X3**2
E(3,3) = E(3,3) + X1**2 + X2**2
E(1,2) = E(1,2) - X1*X2
E(1,3) = E(1,3) - X1*X3
E(2,3) = E(2,3) - X2*X3
X1 = ZERO
X2 = ZERO
X3 = ZERO
200 CONTINUE
C
E(2,1) = E(1,2)
E(3,1) = E(1,3)
E(3,2) = E(2,3)
C
C GENERATES EIGENVALUES AND EIGENVECTORS OF THE INERTIAL MATRIX.
C
CALL TRACE(E, EV, C, 3, IFAIL)
C
C CHECK FOR RIGHT HAND CONVENTION FOR EIGEN-AXES
C
DET = E(1,1)*(E(2,2)*E(3,3) - E(3,2)*E(2,3)) +
+ E(1,2)*(E(3,1)*E(2,3) - E(2,1)*E(3,3)) +
+ E(1,3)*(E(2,1)*E(3,2) - E(3,1)*E(2,2))
C
IF (DET .LT. ZERO) THEN
E(1,2) = -E(1,2)
E(2,2) = -E(2,2)
E(3,2) = -E(3,2)
END IF
C
RETURN
END
SUBROUTINE HESS(X,Y,Z,W,H)
C
C HESS DETERMINES THE HESSIAN OF RHO AT THE SPECIFIED POINT AND
C RETURNS THE EIGENVALUES (W) AND THE EIGENVECTORS (H) OF THE
C HESSIAN.
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
DIMENSION F(3),H(3,3),W(3)
C
COMMON CO(30000),IC(30000),MODE,NCENT,NMO,NPRIMS
C
COMMON /OFFSET/ ITYPE,ICENT,KATOM,IEORB,IE,IMO,ICHARG,IXC,IYC,IZC,
+ IXX,IYY,IZZ,IXS,IYS,IZS,IRR,IR2,IP,IPSI,IGX,IGY,IGZ,ID2,IGXX,
+ IGXY,IGXZ,IGYY,IGYZ,IGZZ
C
DO 100 I = 1,NCENT
CO(IXX+I) = X - CO(IXC+I)
CO(IYY+I) = Y - CO(IYC+I)
CO(IZZ+I) = Z - CO(IZC+I)
CO(IR2+I) = CO(IXX+I)*CO(IXX+I) +
+ CO(IYY+I)*CO(IYY+I) +
+ CO(IZZ+I)*CO(IZZ+I)
CO(IRR+I) = DSQRT(CO(IR2+I))
100 CONTINUE
C
CALL GAUS4
C
H(1,1) = 0.D0
H(1,2) = 0.D0
H(1,3) = 0.D0
H(2,2) = 0.D0
H(2,3) = 0.D0
H(3,3) = 0.D0
C
C BUILD UP THE GRADIENT AND THE HESSIAN ELEMENTS.
C
DO 110 I = 1,NMO
PROD = 2.*CO(IP+I)*CO(IPSI+I)
H(1,1) = H(1,1)+PROD*CO(IGXX+I)+2.*CO(IP+I)*CO(IGX+I)*CO(IGX+I)
H(1,2) = H(1,2)+PROD*CO(IGXY+I)+2.*CO(IP+I)*CO(IGX+I)*CO(IGY+I)
H(1,3) = H(1,3)+PROD*CO(IGXZ+I)+2.*CO(IP+I)*CO(IGX+I)*CO(IGZ+I)
H(2,2) = H(2,2)+PROD*CO(IGYY+I)+2.*CO(IP+I)*CO(IGY+I)*CO(IGY+I)
H(2,3) = H(2,3)+PROD*CO(IGYZ+I)+2.*CO(IP+I)*CO(IGY+I)*CO(IGZ+I)
H(3,3) = H(3,3)+PROD*CO(IGZZ+I)+2.*CO(IP+I)*CO(IGZ+I)*CO(IGZ+I)
110 CONTINUE
DO 120 I = 1,3
DO 120 J = 1,I
H(I,J) = H(J,I)
120 CONTINUE
C
C DIAGONALIZE THE HESSIAN
C
CALL TRACE(H,W,F,3,IERR)
C
RETURN
END
SUBROUTINE MAKNAME(I,STRING,L,EXT)
CHARACTER*(*) STRING,EXT
INTEGER I,J
CALL GETARG(I,STRING)
J = LEN(STRING)
DO 10 N = 1,J
IF(STRING(N:N) .EQ. ' ') THEN
L = N - 1
STRING = STRING(1:L)//EXT
RETURN
ENDIF
10 CONTINUE
STOP ' FAILED TO MAKE A FILE NAME '
RETURN
END
SUBROUTINE NUCLEI(XN,YN,ZN)
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C
COMMON /TRANS/ A(3,3),CR(2),CX(3),CT(3),SCAL,IPROJ
C
DATA SN1,SN2 /.06,.04/
C
ipluma=6
XN = (XN + CR(1))*SCAL
YN = (YN + CR(2))*SCAL
C
CALL PLOT (SNGL(XN-SCAL*SN1),SNGL(YN),3)
C
IF (DABS(ZN) .GE. 1.0D-01) THEN
CALL PLOT (SNGL(XN-SCAL*SN2),SNGL(YN),ipluma)
CALL PLOT (SNGL(XN+SCAL*SN2),SNGL(YN),3)
CALL PLOT (SNGL(XN+SCAL*SN1),SNGL(YN),ipluma)
CALL PLOT (SNGL(XN),SNGL(YN-SCAL*SN1),3)
CALL PLOT (SNGL(XN),SNGL(YN-SCAL*SN2),ipluma)
CALL PLOT (SNGL(XN),SNGL(YN+SCAL*SN2),3)
CALL PLOT (SNGL(XN),SNGL(YN+SCAL*SN1),ipluma)
ELSE
CALL PLOT (SNGL(XN+SCAL*SN1),SNGL(YN),ipluma)
CALL PLOT (SNGL(XN),SNGL(YN-SCAL*SN1),3)
CALL PLOT (SNGL(XN),SNGL(YN+SCAL*SN1),ipluma)
END IF
RETURN
END
C SKK ================================================================== SKK
C
FUNCTION NUMBER (LINE, LPST, NUM, DEC)
C
C CONVERTS A CHARACTER STRING OF NUMBERS INTO ACTUAL NUMBERS EITHER
C INTEGERS OR DECIMAL MAY BE READ.
C NUMBER = 1 IF ALL THE REMAINING CHARACTERS ARE BLANK
C = 2 IF CHARACTERS ARE NOT RECOGNISED AS A NUMBER, LPST IS RESET
C SKK ================================================================== SKK
DOUBLE PRECISION DEC, TEN
CHARACTER*(*) LINE
CHARACTER BLANK, COMMA, DOT, MINUS, L
CHARACTER CTEN(0:9)
DATA CTEN /'0','1','2','3','4','5','6','7','8','9'/
PARAMETER (BLANK = ' ', COMMA = ',')
PARAMETER (DOT = '.', MINUS = '-')
INTEGER ITEN
PARAMETER (ITEN = 10, TEN = 10.0D0)
NUM = 0
DEC = 0.0D0
NP = 0
ND = 0
MS = 0
NUMBER = 0
LPEND = LEN (LINE)
5 IF (LINE(LPST:LPST) .EQ. BLANK) THEN
LPST = LPST + 1
IF (LPST .GT. LPEND) THEN
NUMBER = 1
RETURN
END IF
GOTO 5
END IF