-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathservice.py
297 lines (232 loc) · 10.1 KB
/
service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from typing import Optional, List
from fastapi import FastAPI, BackgroundTasks, Query
from fastapi.middleware.cors import CORSMiddleware
import base64
from io import BytesIO
import os, os.path
import time
import numpy as np
import math
import seaborn as sns
import matplotlib.pyplot as plt
from collections import OrderedDict
import torch as pt
from tensorflow_datasets import Split
from snoopy import set_cache_dir
from snoopy.embedding import EmbeddingConfig, googlenet, alexnet, ImageReshapeSpec, inception, vgg19, efficientnet_b7, uni_se, bert
from snoopy.pipeline import run, store_embeddings
from snoopy.reader import FolderImageConfig, TFDSImageConfig, TFDSTextConfig
from snoopy.result import DemoResultStoringObserver
from snoopy.strategy import SimpleStrategyConfig
from snoopy.reader import ReaderConfig, data_factory
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_headers=["*"],
allow_methods=["*"],
)
dataset_raw_img_size = {
"mnist": (28, 28),
"cifar10": (32, 32),
"cifar100": (32, 32),
}
dataset_raw_img_channels = {
"mnist": 1,
"cifar10": 3,
"cifar100": 3,
}
dataset_classes = {
"mnist": 10,
"cifar10": 10,
"cifar100": 100,
"imdb_reviews": 2,
}
dataset_type = {
"mnist": "IMAGE",
"cifar10": "IMAGE",
"cifar100": "IMAGE",
"imdb_reviews": "TEXT",
}
folder = "."
device = "cpu"
#device = "cuda:0"
cache_dir = folder + "/cache"
result_dir = folder + "/results"
progress_dir = folder
progress_ending = ".prog"
def get_model_and_filenames(dataset : str, label_noise: Optional[float] = None):
if dataset_type[dataset] == "IMAGE":
models = OrderedDict({
"dummy_img": EmbeddingConfig(ImageReshapeSpec(dataset_raw_img_size[dataset], dataset_raw_img_channels[dataset]), batch_size=10, prefetch_size=1, label_noise_amount = label_noise),
"googlenet": EmbeddingConfig(googlenet, batch_size=10, prefetch_size=1, label_noise_amount = label_noise),
"alexnet": EmbeddingConfig(alexnet, batch_size=10, prefetch_size=1, label_noise_amount = label_noise),
"inceptionv3": EmbeddingConfig(inception, batch_size=10, prefetch_size=1, label_noise_amount = label_noise),
"vgg19": EmbeddingConfig(vgg19, batch_size=10, prefetch_size=1, label_noise_amount = label_noise),
"efficientnetb7": EmbeddingConfig(efficientnet_b7, batch_size=10, prefetch_size=1, label_noise_amount = label_noise),
})
else:
models = OrderedDict({
"use": EmbeddingConfig(uni_se, batch_size=10, prefetch_size=1, label_noise_amount = label_noise),
"bert": EmbeddingConfig(bert, batch_size=10, prefetch_size=1, label_noise_amount = label_noise),
})
if label_noise is None:
filename_mapping = {name: dataset+ "-" + name for name in models}
else:
filename_mapping = {name: dataset+ "-LabelNoise" + str(int(label_noise*100)) + "-" + name for name in models}
return models, filename_mapping
labels = {
"dummy_img": "Raw",
"googlenet": "GoogleNet",
"alexnet": "AlexNet",
"inceptionv3": "InceptionV3",
"vgg19": "VGG-19",
"efficientnetb7": "EfficientNet-B7",
"use": "Universal Sentence Encoder (USE)",
"bert": "BERT",
}
color_values = {
"dummy_img": "Black",
"googlenet": "Red",
"alexnet": "Green",
"inceptionv3": "Orange",
"vgg19": "Cyan",
"efficientnetb7": "Magenta",
"use": "Red",
"bert": "Green",
}
def run_pipeline(dataset, missing_models, filename_mapping):
set_cache_dir(cache_dir)
train_data = TFDSImageConfig(dataset_name=dataset, split=Split.TRAIN) if dataset_type[dataset] == "IMAGE" else TFDSTextConfig(dataset_name=dataset, split=Split.TRAIN)
test_data = TFDSImageConfig(dataset_name=dataset, split=Split.TEST) if dataset_type[dataset] == "IMAGE" else TFDSTextConfig(dataset_name=dataset, split=Split.TEST)
train_data_raw = data_factory(train_data)
observer = DemoResultStoringObserver(result_dir, progress_dir, progress_ending, train_data_raw.size, filename_mapping)
run(train_data_config=train_data,
test_data_config=test_data,
embedding_configs=missing_models,
strategy_config=SimpleStrategyConfig(train_size=100, test_size=5_000),
observer=observer,
device=pt.device(device))
observer.store(result_dir, filename_mapping)
for k in missing_models.keys():
path = os.path.join(progress_dir, filename_mapping[k] + progress_ending)
# Update the progress file
with open(path, "w") as f:
f.write("Done")
@app.get("/")
def read_root():
return "Snoopy REST API up and running!"
@app.put("/put")
async def put(background_tasks: BackgroundTasks, dataset : str, embeddings : Optional[List[str]] = Query(None), label_noise: Optional[float] = None):
models, filename_mapping = get_model_and_filenames(dataset, label_noise)
if embeddings is None:
return "No job had to be created!"
assert len([e for e in embeddings if e not in filename_mapping.keys()]) == 0, "Some embeddings were not found!"
models_missing = OrderedDict()
run = False
for k, v in filename_mapping.items():
if k not in embeddings:
continue
path = os.path.join(progress_dir, v + progress_ending)
if not os.path.exists(path):
run = True
with open(path, "w") as f:
f.write("Pending")
models_missing[k] = models[k]
if not run:
return "No job had to be created!"
background_tasks.add_task(run_pipeline, dataset, models_missing, filename_mapping)
return "Job for {} modules is created in the background.".format(len(models_missing))
@app.get("/check")
def check(dataset : str, embeddings : Optional[List[str]] = Query(None), label_noise: Optional[float] = None):
models, filename_mapping = get_model_and_filenames(dataset, label_noise)
if embeddings is None:
return "True"
assert len([e for e in embeddings if e not in filename_mapping.keys()]) == 0, "Some embeddings were not found!"
for k, v in filename_mapping.items():
if k in embeddings:
path = os.path.join(progress_dir, v + progress_ending)
if not os.path.exists(path):
return False
return True
def _get_lowerbound(value, classes):
return ((classes - 1.0)/float(classes)) * (1.0 - math.sqrt(max(0.0, 1 - ((float(classes) / (classes - 1.0)) * value))))
def create_plot(dataset, embeddings, train_numbers, errors, target = None, train_size = 0):
assert len(embeddings) == len(train_numbers) and len(embeddings) == len(errors)
sns.set(font="lato")
sns.set_context("paper")
sns.set_style("whitegrid")
sns.set(font_scale=1.5)
min_tn = 1.0
f = plt.figure(figsize=(7, 5))
for idx, emb in enumerate(embeddings):
ax = sns.lineplot(train_numbers[idx], errors[idx], color=color_values[emb], label=labels[emb])
min_tn = min(min_tn, min(errors[idx]))
ax.lines[-1].set_linestyle("--")
#ax.lines[-1].set_label("{}".format(labels[emb]))
if target is not None:
x = [0, train_size]
sns.lineplot(x, [target]*len(x), ax=ax)
ax.lines[-1].set_color("Blue")
ax.lines[-1].set_linestyle("--")
ax.lines[-1].set_label("Target Error")
ax.legend()
ax.set_ylim(0.0, min(1.0, max(target, min_tn)*2.0))
ax.set_ylabel("BER Estimation")
ax.set_xlabel("Train Samples")
plt.setp(ax.get_legend().get_texts(), fontsize='12') # for legend text
plt.setp(ax.get_legend().get_title(), fontsize='14') # for legend title
buf = BytesIO()
f.savefig(buf, bbox_inches = 'tight', pad_inches = 0.2, format="png")
data = base64.b64encode(buf.getbuffer()).decode("ascii")
#return img
return f"<img src='data:image/png;base64,{data}'/>"
@app.get("/get")
def get(target: float, dataset : str, embeddings : Optional[List[str]] = Query(None), label_noise: Optional[float] = None):
models, filename_mapping = get_model_and_filenames(dataset, label_noise)
assert target >= 0.0 and target <= 1.0
target = 1.0 - target
if embeddings is None:
return "Pending", "", ""
assert len([e for e in embeddings if e not in filename_mapping.keys()]) == 0, "Some embeddings were not found!"
set_cache_dir(cache_dir)
test_data = TFDSImageConfig(dataset_name=dataset, split=Split.TEST) if dataset_type[dataset] == "IMAGE" else TFDSTextConfig(dataset_name=dataset, split=Split.TEST)
test_data_raw = data_factory(test_data)
test_size = float(test_data_raw.size)
train_data = TFDSImageConfig(dataset_name=dataset, split=Split.TRAIN) if dataset_type[dataset] == "IMAGE" else TFDSTextConfig(dataset_name=dataset, split=Split.TRAIN)
train_data_raw = data_factory(train_data)
train_size = float(train_data_raw.size)
done = True
res = {}
es = []
ns = []
errs = []
success = False
for k, v in filename_mapping.items():
if k not in embeddings:
continue
path = os.path.join(progress_dir, v + progress_ending)
if not os.path.exists(path):
res[k] = "Missing"
done = False
else:
with open(path, "r") as f:
res[k] = f.readline()
if not res[k].startswith("Pending"):
npz_path = os.path.join(result_dir, v + ".npz")
data = np.load(npz_path)
n = data["n"]
err = [_get_lowerbound(x/test_size, dataset_classes[dataset]) for x in data["err"]]
if min(err) <= target:
success = True
es.append(k)
ns.append(n)
errs.append(err)
if not res[k].startswith("Done"):
done = False
if len(es) == 0:
return "Pending", res, ""
# Create graph and return the image
image = create_plot(dataset, es, ns, errs, target, train_size)
overall_state = "Achievable" if success else "NotAchievable" if done else "Running"
return overall_state, res, image