Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update to Photon calculation with TOPAS (new engine concept) #701

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions doseCalc/+DoseEngines/matRad_MonteCarloEngineAbstract.m
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ function setDefaults(this)

% copy bixel weight vector into stf struct
if nargin == 5
if sum([stf.totalNumOfBixels]) ~= numel(w)
if sum([stf.totalNumOfBixels]) ~= numel(w) && ~isfield([stf.ray],'shapes')
matRad_cfg.dispError('weighting does not match steering information')
end
counter = 0;
Expand Down Expand Up @@ -97,7 +97,7 @@ function setDefaults(this)
% calculate cubes; use uniform weights here, weighting with actual fluence
% already performed in dij construction
resultGUI = matRad_calcCubes(sum(w),dij);

% remember original fluence weights
resultGUI.w = w;
end
Expand Down
180 changes: 131 additions & 49 deletions doseCalc/+DoseEngines/matRad_TopasMCEngine.m

Large diffs are not rendered by default.

97 changes: 97 additions & 0 deletions examples/matRad_example15_photonMC_MLC.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
%% Example: Photon Treatment Plan using VMC++ dose calculation
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright 2017 the matRad development team.
%
% This file is part of the matRad project. It is subject to the license
% terms in the LICENSE file found in the top-level directory of this
% distribution and at https://github.com/e0404/matRad/LICENSES.txt. No part
% of the matRad project, including this file, may be copied, modified,
% propagated, or distributed except according to the terms contained in the
% LICENSE file.
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% In this example we will show
% (i) how to load patient data into matRad
% (ii) how to setup a photon dose calculation based on the VMC++ Monte Carlo algorithm
% (iii) how to inversely optimize the beamlet intensities directly from command window in MATLAB.
% (iv) how to visualize the result

%% set matRad runtime configuration
matRad_rc %If this throws an error, run it from the parent directory first to set the paths

%% Patient Data Import
% Let's begin with a clear Matlab environment and import the boxphantom
% into your workspace.
load('BOXPHANTOM.mat');

%% Treatment Plan
% The next step is to define your treatment plan labeled as 'pln'. This
% structure requires input from the treatment planner and defines the most
% important cornerstones of your treatment plan.

pln.radiationMode = 'photons';
pln.machine = 'Generic';
pln.numOfFractions = 30;
pln.propStf.gantryAngles = [0:72:359];
pln.propStf.couchAngles = [0 0 0 0 0];
%pln.propStf.gantryAngles = [0];
%pln.propStf.couchAngles = [0];
pln.propStf.bixelWidth = 10;
pln.propStf.numOfBeams = numel(pln.propStf.gantryAngles);
pln.propStf.isoCenter = ones(pln.propStf.numOfBeams,1) * matRad_getIsoCenter(cst,ct,0);
% Enable sequencing and direct aperture optimization (DAO).
pln.propOpt.runSequencing = 1;
pln.propOpt.runDAO = 1;

quantityOpt = 'physicalDose';
modelName = 'none';

% retrieve bio model parameters
pln.bioParam = matRad_bioModel(pln.radiationMode,quantityOpt, modelName);

% retrieve scenarios for dose calculation and optimziation
pln.multScen = matRad_NominalScenario(ct);
% dose calculation settings
pln.propDoseCalc.doseGrid.resolution.x = 3; % [mm]
pln.propDoseCalc.doseGrid.resolution.y = 3; % [mm]
pln.propDoseCalc.doseGrid.resolution.z = 3; % [mm]

%% Generate Beam Geometry STF
stf = matRad_generateStf(ct,cst,pln);

%% Dose Calculation

dij = matRad_calcDoseInfluence(ct,cst,stf,pln);

%% Inverse Optimization for IMRT
resultGUI = matRad_fluenceOptimization(dij,cst,pln);
%% Sequencing
% This is a multileaf collimator leaf sequencing algorithm that is used in
% order to modulate the intensity of the beams with multiple static
% segments, so that translates each intensity map into a set of deliverable
% aperture shapes.
resultGUI = matRad_siochiLeafSequencing(resultGUI,stf,dij,5,1);
[pln,stf] = matRad_aperture2collimation(pln,stf,resultGUI.sequencing,resultGUI.apertureInfo);
%% Aperture visualization
% Use a matrad function to visualize the resulting aperture shapes
matRad_visApertureInfo(resultGUI.apertureInfo)
%% Plot the Resulting Dose Slice
% Just let's plot the transversal iso-center dose slice
slice = round(pln.propStf.isoCenter(1,3)./ct.resolution.z);
figure,
imagesc(resultGUI.physicalDose(:,:,slice)),colorbar, colormap(jet)

%% Dose Calculation
%resultGUI_MC = matRad_calcDoseInfluence(ct,cst,stf,pln);
pln.propDoseCalc.engine = 'TOPAS';
pln.propDoseCalc.beamProfile = 'phasespace';
pln.propDoseCalc.externalCalculation =true;
resultGUI_MC = matRad_calcDoseDirect(ct,stf,pln,cst,resultGUI.w);

%% readout
%foldername = 'FolderName';
%pln = matRad_cfg.getDefaultClass(pln,'propMC');
%resultGUI_MC = pln.propMC.readExternal(foldername);
1 change: 1 addition & 0 deletions matRad_aperture2collimation.m
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,7 @@

ray.shape = shapeTotalF;
ray.weight = ones(1,nShapes);
ray.collimation = pln.propStf.collimation;
stfTmp.ray = ray;

stf(iBeam) = stfTmp;
Expand Down
2 changes: 1 addition & 1 deletion matRad_calcCubes.m
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@
resultGUI = orderfields(resultGUI);

% interpolation if dose grid does not match ct grid
if any(dij.ctGrid.dimensions~=dij.doseGrid.dimensions)
if isfield(dij,'ctGrid') && any(dij.ctGrid.dimensions~=dij.doseGrid.dimensions)
myFields = fieldnames(resultGUI);
for i = 1:numel(myFields)
if numel(resultGUI.(myFields{i})) == dij.doseGrid.numOfVoxels
Expand Down
5 changes: 3 additions & 2 deletions topas/beamSetup/TOPAS_beamSetup_mlc.txt.in
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
s:Ge/MultiLeafCollimatorA/Type = "TsMultiLeafCollimator"
s:Ge/MultiLeafCollimatorA/Parent = "Nozzle"
s:Ge/MultiLeafCollimatorA/Material = "Aluminum"
s:Ge/MultiLeafCollimatorA/Material = "G4_W"
d:Ge/MultiLeafCollimatorA/TransX = 0.0 cm
d:Ge/MultiLeafCollimatorA/TransY = 0.0 cm
d:Ge/MultiLeafCollimatorA/TransZ = 0.5 * Ge/MultiLeafCollimatorA/Thickness cm
d:Ge/MultiLeafCollimatorA/TransZ = Sim/Ge/MultiLeafCollimatorA/TransZ cm
d:Ge/MultiLeafCollimatorA/RotX = 0.0 deg
d:Ge/MultiLeafCollimatorA/RotY = 0.0 deg
d:Ge/MultiLeafCollimatorA/RotZ = 90.0 deg
s:Ge/MultiLeafCollimatorA/DrawingStyle = "Solid"
2 changes: 1 addition & 1 deletion topas/beamSetup/TOPAS_beamSetup_phasespace.txt.in
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,6 @@ s:So/Phasespace/Component = "Nozzle"
#b:So/Example/LimitedAssumeEveryParticleIsNewHistory = "true"
#b:So/Example/LimitedAssumePhotonIsNewHistory = "true"
i:So/Phasespace/PhaseSpaceMultipleUse = 0
i:So/Phasespace/NumberOfHistoriesInRun = 5
i:So/Phasespace/NumberOfHistoriesInRun = Tf/Phasespace/NumberOfHistoriesInRun/Value
i:So/Phasespace/PreCheckShowParticleCountAtInterval = 100000
b:So/Phasespace/PhaseSpacePreCheck = "False"
Loading