-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
38 lines (33 loc) · 1.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
from models import MADE
from data import BinarisedMNIST
from train import train_epoch, validate_epoch
from utils.plot import plot_comparison, sample_digits
epochs = 5
save_model = False
seed = 290713
# Get datasets and train loaders.
bmnist = BinarisedMNIST()
train, val, _ = bmnist.get_data_splits()
train_loader = torch.utils.data.DataLoader(train, batch_size=128, shuffle=True)
val_loader = torch.utils.data.DataLoader(val, batch_size=128, shuffle=True)
# Define model, optimizer, and scheduler.
model = MADE(n_in=784, hidden_dims=[1024], random_order=False, seed=seed)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1)
# Training loop.
for epoch in range(1, epochs + 1):
train_epoch(model, train_loader, epoch, optimizer, scheduler=scheduler)
sample_digits(model, epoch, seed=seed)
validate_epoch(model, val_loader, epoch)
if save_model:
string = "_".join([str(h) for h in hidden_dims])
torch.save(
{
"epoch": epochs,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
},
"./model_saves/model_" + string + ".pt",
)