-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathm_qm45_cut.c
134 lines (120 loc) · 3.55 KB
/
m_qm45_cut.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
Copyright (c) 2017 - Daniel Valcarce.
Permission is granted for use and modification of this file for
research, non-commercial purposes.
*/
#include "common.h"
#include "sysfunc.h"
#include "trec_eval.h"
#include "functions.h"
#include "trec_format.h"
static int
te_calc_qm45_cut(const EPI *epi, const REL_INFO *rel_info,
const RESULTS *results, const TREC_MEAS *tm, TREC_EVAL *eval);
static long long_cutoff_array[] = { 5, 10, 15, 20, 30, 100 };
static PARAMS default_qm45_cutoffs = {
NULL, sizeof(long_cutoff_array) / sizeof(long_cutoff_array[0]),
&long_cutoff_array[0] };
static double get_gain(const long rel_level);
/* See trec_eval.h for definition of TREC_MEAS */
TREC_MEAS te_meas_qm45_cut =
{ "qm45_cut",
" Q-measure.\n\
Gain values are 1 for relevance value 4 and 2 for relevance\n\
value 5 in the qrels file.\n\
Cutoffs must be positive without duplicates\n\
Default params: -m ndcg45_cut.5,10,15,20,30,100\n\
Cite: Tetsuya Sakai and Noriko Kando: On information retrieval metrics\n\
designed for evaluation with incomplete relevance assessments. In\n\
Information Retrieval 11, 5 (2008), 447-470.\n\
DOI=http://dx.doi.org/10.1007/s10791-008-9059-7\n",
te_init_meas_a_float_cut_long, te_calc_qm45_cut,
te_acc_meas_a_cut, te_calc_avg_meas_a_cut,
te_print_single_meas_a_cut, te_print_final_meas_a_cut,
(void *) &default_qm45_cutoffs, -1 };
static int te_calc_qm45_cut(const EPI *epi, const REL_INFO *rel_info,
const RESULTS *results, const TREC_MEAS *tm, TREC_EVAL *eval) {
long *cutoffs = (long *) tm->meas_params->param_values;
long cutoff_index = 0;
RES_RELS res_rels;
long i;
long rel_so_far = 0;
long cur_lvl, lvl_count = 0;
double q_measure = 0.0;
double cum_gain = 0.0;
double *cgi;
double max_cgi;
double gain;
long total = 0.0;
if (UNDEF == te_form_res_rels(epi, rel_info, results, &res_rels)) {
return (UNDEF);
}
for (i = 1; i < res_rels.num_rel_levels; i++) {
if (get_gain(i) > 0.0) {
total += res_rels.rel_levels[i];
}
}
if (!total) {
eval->values[tm->eval_index].value = 0.0;
return (1);
}
/* Precompute ideal cumulative gains (cgi) at each position */
if ((cgi = (double *) calloc(total, sizeof(double))) == NULL) {
fprintf(stderr, "qm: Not enough memory");
return (UNDEF);
}
cutoff_index = 0;
lvl_count = 0;
cur_lvl = res_rels.num_rel_levels - 1;
for (i = 0; 1; i++) {
lvl_count++;
while (cur_lvl > 0 && lvl_count > res_rels.rel_levels[cur_lvl]) {
cur_lvl--;
lvl_count = 1;
}
if ((gain = get_gain(cur_lvl)) == 0) {
break;
}
cgi[i] = gain;
if (i > 0) {
cgi[i] += cgi[i - 1];
}
}
max_cgi = cgi[total - 1];
/* Compute Q-measure */
for (i = 0; i < res_rels.num_ret; i++) {
if (i == cutoffs[cutoff_index]) {
/* Calculate previous cutoff threshold.
Note i guaranteed to be positive by init_meas */
eval->values[tm->eval_index + cutoff_index].value = q_measure
/ (double) total;
if (++cutoff_index == tm->meas_params->num_params) {
break;
}
}
if ((gain = get_gain(res_rels.results_rel_list[i])) > 0.0) {
rel_so_far++;
cum_gain += gain;
q_measure += (cum_gain + rel_so_far)
/ (i + 1 + (i >= total ? max_cgi : cgi[i]));
}
}
/* calculate values for those cutoffs not achieved */
q_measure /= (double) total;
while (cutoff_index < tm->meas_params->num_params) {
eval->values[tm->eval_index + cutoff_index].value = q_measure;
cutoff_index++;
}
free(cgi);
return (1);
}
static inline double get_gain(const long rel_level) {
switch (rel_level) {
case 4:
return 1.0;
case 5:
return 2.0;
default:
return 0.0;
}
}