-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrace.c
197 lines (153 loc) · 3.48 KB
/
trace.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// trace.c
#include "light.h"
typedef struct tnode_s
{
int type;
vec3_t normal;
float dist;
int children[2];
int pad;
} tnode_t;
tnode_t *tnodes, *tnode_p;
/*
==============
MakeTnode
Converts the disk node structure into the efficient tracing structure
==============
*/
void MakeTnode (int nodenum)
{
tnode_t *t;
dplane_t *plane;
int i;
dnode_t *node;
t = tnode_p++;
node = dnodes + nodenum;
plane = dplanes + node->planenum;
t->type = plane->type;
VectorCopy (plane->normal, t->normal);
t->dist = plane->dist;
for (i=0 ; i<2 ; i++)
{
if (node->children[i] < 0)
t->children[i] = dleafs[-node->children[i] - 1].contents;
else
{
t->children[i] = tnode_p - tnodes;
MakeTnode (node->children[i]);
}
}
}
/*
=============
MakeTnodes
Loads the node structure out of a .bsp file to be used for light occlusion
=============
*/
void MakeTnodes (dmodel_t *bm)
{
tnode_p = tnodes = malloc(numnodes * sizeof(tnode_t));
MakeTnode (0);
}
/*
==============================================================================
LINE TRACING
The major lighting operation is a point to point visibility test, performed
by recursive subdivision of the line by the BSP tree.
==============================================================================
*/
typedef struct
{
vec3_t backpt;
int side;
int node;
} tracestack_t;
/*
==============
TestLine
==============
*/
qboolean TestLine (vec3_t start, vec3_t stop)
{
int node;
float front, back;
tracestack_t *tstack_p;
int side;
float frontx,fronty, frontz, backx, backy, backz;
tracestack_t tracestack[64];
tnode_t *tnode;
frontx = start[0];
fronty = start[1];
frontz = start[2];
backx = stop[0];
backy = stop[1];
backz = stop[2];
tstack_p = tracestack;
node = 0;
while (1)
{
while (node < 0 && node != CONTENTS_SOLID)
{
// pop up the stack for a back side
tstack_p--;
if (tstack_p < tracestack)
return true;
node = tstack_p->node;
// set the hit point for this plane
frontx = backx;
fronty = backy;
frontz = backz;
// go down the back side
backx = tstack_p->backpt[0];
backy = tstack_p->backpt[1];
backz = tstack_p->backpt[2];
node = tnodes[tstack_p->node].children[!tstack_p->side];
}
if (node == CONTENTS_SOLID)
return false; // DONE!
tnode = &tnodes[node];
switch (tnode->type)
{
case PLANE_X:
front = frontx - tnode->dist;
back = backx - tnode->dist;
break;
case PLANE_Y:
front = fronty - tnode->dist;
back = backy - tnode->dist;
break;
case PLANE_Z:
front = frontz - tnode->dist;
back = backz - tnode->dist;
break;
default:
front = (frontx*tnode->normal[0] + fronty*tnode->normal[1] + frontz*tnode->normal[2]) - tnode->dist;
back = (backx*tnode->normal[0] + backy*tnode->normal[1] + backz*tnode->normal[2]) - tnode->dist;
break;
}
if (front > -ON_EPSILON && back > -ON_EPSILON)
// if (front > 0 && back > 0)
{
node = tnode->children[0];
continue;
}
if (front < ON_EPSILON && back < ON_EPSILON)
// if (front <= 0 && back <= 0)
{
node = tnode->children[1];
continue;
}
side = front < 0;
front = front / (front-back);
tstack_p->node = node;
tstack_p->side = side;
tstack_p->backpt[0] = backx;
tstack_p->backpt[1] = backy;
tstack_p->backpt[2] = backz;
tstack_p++;
backx = frontx + front*(backx-frontx);
backy = fronty + front*(backy-fronty);
backz = frontz + front*(backz-frontz);
node = tnode->children[side];
}
}