-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_features.py
428 lines (393 loc) · 20 KB
/
create_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Usage for creating training feature file
# nohup spark-submit --master local[*] --conf spark.pyspark.python=python --executor-cores 8 --executor-memory 40G --driver-memory 5G create_features.py train &
# Usage for creating testing feature file
# nohup spark-submit --master local[*] --conf spark.pyspark.python=python --executor-cores 8 --executor-memory 40G --driver-memory 5G create_features.py test &
from pyspark import SparkConf, SparkContext
from pyspark.sql import SQLContext, SparkSession
from pyspark.sql.types import *
from pyspark.sql import functions as func
import pandas as pd
import time
import logging
import logging.config
import sys
args = sys.argv
data_type = args[1] # Either "train" or "test"
# data_type = 'train'
_telematics_data_dir='./raw_data/' + data_type
_csv_filenames='/part-*.csv'
_feature_data_dir='./dataset/' + data_type
# Set logger
logging.config.fileConfig('./config/logging.conf', disable_existing_loggers=True)
logger = logging.getLogger('root')
# Set up Spark
spark = SparkSession\
.builder\
.appName("Create_features")\
.getOrCreate()
def load_data_into_spark(_filepath):
# Load data files
struct = StructType([
StructField('bookingID', StringType(), False),
StructField('accuracy', DoubleType(), False),
StructField('bearing', DoubleType(), False),
StructField('accx', DoubleType(), False),
StructField('accy', DoubleType(), False),
StructField('accz', DoubleType(), False),
StructField('gyrox', DoubleType(), False),
StructField('gyroy', DoubleType(), False),
StructField('gyroz', DoubleType(), False),
StructField('second', DoubleType(), False),
StructField('speed', DoubleType(), False)])
try:
sdf_raw = spark.read.csv(_filepath, schema=struct, header=True)
except Exception as e:
logger.error('Failed to load data from ' + str(_filepath))
logger.error('Exception on load_data_into_spark(): '+str(e))
raise
return sdf_raw
def create_agg_features(_dirpath, _sdf_raw):
# Register table
_sdf_raw.registerTempTable('sdf_raw')
## Calibrate acc values ##
# If speed is negative value, replace with 0
# If speed exceeds 300km (i.e. 83.34 m/s), replace with 83.34
# Average records by second because there are records whose second values are same
sdf_aggsec = spark.sql(
"SELECT bookingID, second,\
AVG(accuracy) AS accuracy,\
AVG(bearing) AS bearing,\
AVG(accx) AS accx, AVG(accy) AS accy, AVG(accz) AS accz,\
AVG(gyrox) AS gyrox, AVG(gyroy) AS gyroy, AVG(gyroz) AS gyroz,\
AVG(LEAST(GREATEST(speed, 0), 83.34)) AS speed\
FROM sdf_raw\
GROUP BY bookingID, second")
sdf_aggsec.registerTempTable('sdf_aggsec')
# Identify 3 percentile value of speed
sdf_aggsec_speed3perc = spark.sql(
"SELECT bookingID,\
PERCENTILE(speed, 0.03) AS speed_3perc\
FROM sdf_aggsec\
GROUP BY bookingID")
sdf_aggsec_speed3perc.registerTempTable('sdf_aggsec_speed3perc')
# Extract records whose speed is within 3% percentile, then calculate avarage of acc in these records
sdf_aggsec_speed3perc_lt = spark.sql(
"SELECT aa.bookingID,\
AVG(aa.accx) AS accx_offset,\
AVG(aa.accy) AS accy_offset,\
AVG(aa.accz) AS accz_offset\
FROM sdf_aggsec aa LEFT JOIN sdf_aggsec_speed3perc bb ON aa.bookingID=bb.bookingID\
WHERE aa.speed <= bb.speed_3perc\
GROUP BY aa.bookingID")
sdf_aggsec_speed3perc_lt.registerTempTable('sdf_aggsec_speed3perc_lt')
# Caribrate acc by subtracting offset values
sdf_aggsec_carib = spark.sql(
"SELECT aa.bookingID, aa.second, aa.accuracy, aa.bearing,\
aa.accx - accx_offset AS accx,\
aa.accy - accy_offset AS accy,\
aa.accz - accz_offset AS accz,\
aa.gyrox, aa.gyroy, aa.gyroz,\
aa.speed\
FROM sdf_aggsec aa LEFT JOIN sdf_aggsec_speed3perc_lt bb ON aa.bookingID=bb.bookingID")
sdf_aggsec_carib.registerTempTable('sdf_aggsec_carib')
## Feature Engineering 1 ##
# 1st phase pre-processing
# Calculate norm(strength) of acc3d and gyro3d
sdf_1_1 = spark.sql(
"SELECT *,\
SQRT(accx*accx + accy*accy + accz*accz) AS acc3d,\
SQRT(gyrox*gyrox + gyroy*gyroy + gyroz*gyroz) AS gyro3d,\
SQRT(accx*accx + accy*accy + accz*accz)*SQRT(gyrox*gyrox + gyroy*gyroy + gyroz*gyroz) AS acc3dgyro3d\
FROM sdf_aggsec_carib")
sdf_1_1.registerTempTable('sdf_1_1')
# 2nd phase pre-processing
# Extract records from t-5 point of time
sdf_1_2 = spark.sql(
"SELECT *,\
LAG(bearing, 5) OVER(PARTITION BY bookingID ORDER BY second) AS bearing_t5,\
LAG(accx, 5) OVER(PARTITION BY bookingID ORDER BY second) AS accx_t5,\
LAG(accy, 5) OVER(PARTITION BY bookingID ORDER BY second) AS accy_t5,\
LAG(accy, 5) OVER(PARTITION BY bookingID ORDER BY second) AS accz_t5,\
LAG(gyrox, 5) OVER(PARTITION BY bookingID ORDER BY second) AS gyrox_t5,\
LAG(gyroy, 5) OVER(PARTITION BY bookingID ORDER BY second) AS gyroy_t5,\
LAG(gyroz, 5) OVER(PARTITION BY bookingID ORDER BY second) AS gyroz_t5,\
LAG(second, 5) OVER(PARTITION BY bookingID ORDER BY second) AS second_t5,\
LAG(speed, 5) OVER(PARTITION BY bookingID ORDER BY second) AS speed_t5,\
LAG(acc3d, 5) OVER(PARTITION BY bookingID ORDER BY second) AS acc3d_t5,\
LAG(gyro3d, 5) OVER(PARTITION BY bookingID ORDER BY second) AS gyro3d_t5,\
LAG(acc3dgyro3d, 5) OVER(PARTITION BY bookingID ORDER BY second) AS acc3dgyro3d_t5\
FROM sdf_1_1")
sdf_1_2.registerTempTable('sdf_1_2')
# 3rd phase
# Compute record sub
sdf_1_3 = spark.sql(
"SELECT *,\
COALESCE(ABS(bearing - bearing_t5), 0) AS bearing_sub_t5,\
COALESCE(ABS(accx - accx_t5), 0) AS accx_sub_t5,\
COALESCE(ABS(accy - accy_t5), 0) AS accy_sub_t5,\
COALESCE(ABS(accz - accz_t5), 0) AS accz_sub_t5,\
COALESCE(ABS(gyrox - gyrox_t5), 0) AS gyrox_sub_t5,\
COALESCE(ABS(gyroy - gyroy_t5), 0) AS gyroy_sub_t5,\
COALESCE(ABS(gyroz - gyroz_t5), 0) AS gyroz_sub_t5,\
COALESCE(second - second_t5, 0) AS second_sub_t5,\
COALESCE(ABS(speed - speed_t5), 0) AS speed_sub_t5,\
COALESCE(ABS(acc3d - acc3d_t5), 0) AS acc3d_sub_t5,\
COALESCE(ABS(gyro3d - gyro3d_t5), 0) AS gyro3d_sub_t5,\
COALESCE(ABS(acc3dgyro3d - acc3dgyro3d_t5), 0) AS acc3dgyro3d_sub_t5\
FROM sdf_1_2")
sdf_1_3.registerTempTable('sdf_1_3')
# 4th phase
# Compute threshold
sdf_1_4 = spark.sql(
"SELECT bookingID,\
PERCENTILE(bearing_sub_t5, 0.7) AS bearing_sub_t5_70perc,\
PERCENTILE(accx_sub_t5, 0.7) AS accx_sub_t5_70perc,\
PERCENTILE(accy_sub_t5, 0.7) AS accy_sub_t5_70perc,\
PERCENTILE(accz_sub_t5, 0.7) AS accz_sub_t5_70perc,\
PERCENTILE(gyrox_sub_t5, 0.7) AS gyrox_sub_t5_70perc,\
PERCENTILE(gyroy_sub_t5, 0.7) AS gyroy_sub_t5_70perc,\
PERCENTILE(gyroz_sub_t5, 0.7) AS gyroz_sub_t5_70perc,\
PERCENTILE(second_sub_t5, 0.7) AS second_sub_t5_70perc,\
PERCENTILE(acc3d_sub_t5, 0.7) AS acc3d_sub_t5_70perc,\
PERCENTILE(gyro3d_sub_t5, 0.7) AS gyro3d_sub_t5_70perc,\
PERCENTILE(acc3dgyro3d_sub_t5, 0.7) AS acc3dgyro3d_sub_t5_70perc\
FROM sdf_1_3\
GROUP BY bookingID")
sdf_1_4.registerTempTable('sdf_1_4')
# 5th phase
# Aggregate features into bookingID level
sdf_1_5 = spark.sql(
"SELECT aa.bookingID,\
MAX(aa.second) AS travel_sec,\
PERCENTILE(COALESCE(aa.speed_sub_t5/aa.second_sub_t5,0), 0.99) AS speed_sub_t5_max,\
STDDEV(COALESCE(aa.speed_sub_t5/aa.second_sub_t5,0)) AS speed_sub_t5_std,\
AVG(aa.speed) AS speed_avg,\
PERCENTILE(aa.speed, 0.5) AS speed_med,\
PERCENTILE(aa.speed, 0.99) AS speed_max,\
PERCENTILE(ABS(COALESCE(aa.bearing_sub_t5/aa.second_sub_t5, 0)), 0.9) AS disp_sub_t5_90perc,\
COUNT(CASE WHEN aa.accx_sub_t5 > bb.accx_sub_t5_70perc THEN 1 END) accx_sub_t5_cnt70perc,\
PERCENTILE(aa.speed, 0.8) AS speed_80perc,\
PERCENTILE(aa.speed, 0.9) AS speed_90perc,\
PERCENTILE(COALESCE(aa.speed_sub_t5/aa.second_sub_t5,0), 0.9) AS speed_sub_t5_90perc,\
AVG(ABS(COALESCE(aa.bearing_sub_t5/aa.second_sub_t5, 0))) AS disp_sub_t5_avg,\
COUNT(CASE WHEN aa.accy_sub_t5 > bb.accy_sub_t5_70perc THEN 1 END) accy_sub_t5_cnt70perc,\
STDDEV(aa.speed) AS speed_std,\
COUNT(CASE WHEN aa.accz_sub_t5 > bb.accz_sub_t5_70perc THEN 1 END) accz_sub_t5_cnt70perc,\
COUNT(CASE WHEN aa.speed_sub_t5 > bb.accx_sub_t5_70perc THEN 1 END) speed_sub_t5_cnt70perc,\
PERCENTILE(ABS(COALESCE(aa.bearing_sub_t5/aa.second_sub_t5, 0)), 0.99) AS disp_sub_t5_max,\
PERCENTILE(COALESCE(aa.speed_sub_t5/aa.second_sub_t5,0), 0.5) AS speed_sub_t5_med,\
PERCENTILE(aa.gyroy, 0.5) AS gyroy_med,\
PERCENTILE(aa.gyroz, 0.5) AS gyroz_med,\
PERCENTILE(aa.accx, 0.99) AS accx_max,\
COUNT(CASE WHEN aa.gyrox_sub_t5 > bb.gyrox_sub_t5_70perc THEN 1 END) gyrox_sub_t5_cnt70perc,\
AVG(COALESCE(aa.speed_sub_t5/aa.second_sub_t5,0)) AS speed_sub_t5_avg,\
PERCENTILE(ABS(COALESCE(aa.bearing_sub_t5/aa.second_sub_t5, 0)), 0.8) AS disp_sub_t5_80perc,\
STDDEV(ABS(COALESCE(aa.bearing_sub_t5/aa.second_sub_t5, 0))) AS disp_sub_t5_std,\
STDDEV(aa.accz) AS accz_std,\
PERCENTILE(aa.gyrox, 0.5) AS gyrox_med,\
PERCENTILE(aa.accz, 0.99) AS accz_max,\
PERCENTILE(aa.accy, 0.99) AS accy_max,\
PERCENTILE(COALESCE(aa.accx_sub_t5/aa.second_sub_t5,0), 0.5) AS accx_sub_t5_med,\
PERCENTILE(COALESCE(aa.speed_sub_t5/aa.second_sub_t5,0), 0.8) AS speed_sub_t5_80perc,\
COUNT(CASE WHEN aa.gyroy_sub_t5 > bb.gyroy_sub_t5_70perc THEN 1 END) gyroy_sub_t5_cnt70perc\
FROM sdf_1_3 aa LEFT JOIN sdf_1_4 bb ON aa.bookingID=bb.bookingID\
GROUP BY 1")
sdf_1_5.registerTempTable('sdf_1_5')
## Feature Engineering 2 ##
# 1st phase pre-processing
sdf_2_1 = spark.sql(
"SELECT *,\
ROW_NUMBER() OVER (PARTITION BY bookingID ORDER BY second) AS sequence\
FROM sdf_1_1")
sdf_2_1.registerTempTable('sdf_2_1')
# 2nd phase pre-processing
# Extract records from t-1 point of time
sdf_2_2 = spark.sql(
"SELECT *,\
LAG(bearing, 1) OVER(PARTITION BY bookingID ORDER BY second) AS bearing_t1,\
LAG(accx, 1) OVER(PARTITION BY bookingID ORDER BY second) AS accx_t1,\
LAG(accy, 1) OVER(PARTITION BY bookingID ORDER BY second) AS accy_t1,\
LAG(accy, 1) OVER(PARTITION BY bookingID ORDER BY second) AS accz_t1,\
LAG(gyrox, 1) OVER(PARTITION BY bookingID ORDER BY second) AS gyrox_t1,\
LAG(gyroy, 1) OVER(PARTITION BY bookingID ORDER BY second) AS gyroy_t1,\
LAG(gyroz, 1) OVER(PARTITION BY bookingID ORDER BY second) AS gyroz_t1,\
LAG(second, 1) OVER(PARTITION BY bookingID ORDER BY second) AS second_t1,\
LAG(speed, 1) OVER(PARTITION BY bookingID ORDER BY second) AS speed_t1,\
LAG(acc3d, 1) OVER(PARTITION BY bookingID ORDER BY second) AS acc3d_t1,\
LAG(gyro3d, 1) OVER(PARTITION BY bookingID ORDER BY second) AS gyro3d_t1,\
LAG(acc3dgyro3d, 1) OVER(PARTITION BY bookingID ORDER BY second) AS acc3dgyro3d_t1\
FROM sdf_2_1")
sdf_2_2.registerTempTable('sdf_2_2')
# 3rd phase pre-processing
# Calculate sign in between of each point of time
sdf_2_3 = spark.sql(
"SELECT bookingID, second, sequence,\
SIGN(ABS(accx - COALESCE(accx_t1, 0))) AS sgn_accx,\
SIGN(ABS(accy - COALESCE(accy_t1, 0))) AS sgn_accy,\
SIGN(ABS(accz - COALESCE(accz_t1, 0))) AS sgn_accz,\
SIGN(ABS(gyrox - COALESCE(gyrox_t1, 0))) AS sgn_gyrox,\
SIGN(ABS(gyroy - COALESCE(gyroy_t1, 0))) AS sgn_gyroy,\
SIGN(ABS(gyroz - COALESCE(gyroz_t1, 0))) AS sgn_gyroz,\
SIGN(speed - COALESCE(speed_t1, 0)) AS sgn_speed,\
SIGN(second - COALESCE(second_t1, 0)) AS sgn_second,\
SIGN(acc3d - COALESCE(acc3d_t1, 0)) AS sgn_acc3d,\
SIGN(gyro3d - COALESCE(gyro3d_t1, 0)) AS sgn_gyro3d,\
SIGN(acc3dgyro3d - COALESCE(acc3dgyro3d_t1, 0)) AS sgn_acc3dgyro3d\
FROM sdf_2_2")
sdf_2_3.registerTempTable('sdf_2_3')
# 4th phase pre-processing
sdf_2_4 = spark.sql(
"SELECT bookingID, sequence,\
sgn_speed,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_speed ORDER BY second) AS group_speed,\
sgn_accx,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_accx ORDER BY second) AS group_accx,\
sgn_accy,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_accy ORDER BY second) AS group_accy,\
sgn_accz,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_accy ORDER BY second) AS group_accz,\
sgn_gyrox,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_gyrox ORDER BY second) AS group_gyrox,\
sgn_gyroy,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_gyroy ORDER BY second) AS group_gyroy,\
sgn_gyroz,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_gyroz ORDER BY second) AS group_gyroz,\
sgn_acc3d,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_acc3d ORDER BY second) AS group_acc3d,\
sgn_gyro3d,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_gyro3d ORDER BY second) AS group_gyro3d,\
sgn_acc3dgyro3d,\
sequence - ROW_NUMBER() OVER (PARTITION BY bookingID, sgn_acc3dgyro3d ORDER BY second) AS group_acc3dgyro3d\
FROM sdf_2_3")
sdf_2_4.registerTempTable('sdf_2_4')
# 5th phase pre-processing
# Calculate the longest consecutive value increase in each feature
sdf_2_5_speed = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS speed_max_inc_num\
FROM sdf_2_4\
WHERE sgn_speed=1 GROUP BY bookingID, group_speed\
")
sdf_2_5_speed.registerTempTable('sdf_2_5_speed')
sdf_2_5_accx = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS accx_max_inc_num\
FROM sdf_2_4\
WHERE sgn_accx=1 GROUP BY bookingID, group_accx\
")
sdf_2_5_accx.registerTempTable('sdf_2_5_accx')
sdf_2_5_accy = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS accy_max_inc_num\
FROM sdf_2_4\
WHERE sgn_accy=1 GROUP BY bookingID, group_accy\
")
sdf_2_5_accy.registerTempTable('sdf_2_5_accy')
sdf_2_5_accz = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS accz_max_inc_num\
FROM sdf_2_4\
WHERE sgn_accz=1 GROUP BY bookingID, group_accz\
")
sdf_2_5_accz.registerTempTable('sdf_2_5_accz')
sdf_2_5_gyrox = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS gyrox_max_inc_num\
FROM sdf_2_4\
WHERE sgn_gyrox=1 GROUP BY bookingID, group_gyrox\
")
sdf_2_5_gyrox.registerTempTable('sdf_2_5_gyrox')
sdf_2_5_gyroy = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS gyroy_max_inc_num\
FROM sdf_2_4\
WHERE sgn_gyroy=1 GROUP BY bookingID, group_gyroy\
")
sdf_2_5_gyroy.registerTempTable('sdf_2_5_gyroy')
sdf_2_5_gyroz = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS gyroz_max_inc_num\
FROM sdf_2_4\
WHERE sgn_gyroz=1 GROUP BY bookingID, group_gyroz\
")
sdf_2_5_gyroz.registerTempTable('sdf_2_5_gyroz')
sdf_2_5_acc3d = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS acc3d_max_inc_num\
FROM sdf_2_4\
WHERE sgn_acc3d=1 GROUP BY bookingID, group_acc3d\
")
sdf_2_5_acc3d.registerTempTable('sdf_2_5_acc3d')
sdf_2_5_gyro3d = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS gyro3d_max_inc_num\
FROM sdf_2_4\
WHERE sgn_gyro3d=1 GROUP BY bookingID, group_gyro3d\
")
sdf_2_5_gyro3d.registerTempTable('sdf_2_5_gyro3d')
sdf_2_5_acc3dgyro3d = spark.sql(
"SELECT DISTINCT bookingID,\
MAX(COUNT(*)) OVER (PARTITION BY bookingID) AS acc3dgyro3d_max_inc_num\
FROM sdf_2_4\
WHERE sgn_acc3dgyro3d=1 GROUP BY bookingID, group_acc3dgyro3d\
")
sdf_2_5_acc3dgyro3d.registerTempTable('sdf_2_5_acc3dgyro3d')
# 6th phase pre-processing
# Join tables into one
sdf_2_6 = spark.sql(
"SELECT sdf_2_5_speed.bookingID,\
sdf_2_5_speed.speed_max_inc_num,\
sdf_2_5_accx.accx_max_inc_num,\
sdf_2_5_accy.accy_max_inc_num,\
sdf_2_5_accz.accz_max_inc_num,\
sdf_2_5_gyrox.gyrox_max_inc_num,\
sdf_2_5_gyroy.gyroy_max_inc_num,\
sdf_2_5_gyroz.gyroz_max_inc_num,\
sdf_2_5_acc3d.acc3d_max_inc_num,\
sdf_2_5_gyro3d.gyro3d_max_inc_num,\
sdf_2_5_acc3dgyro3d.acc3dgyro3d_max_inc_num\
FROM sdf_2_5_speed\
LEFT JOIN sdf_2_5_accx ON sdf_2_5_speed.bookingID=sdf_2_5_accx.bookingID\
LEFT JOIN sdf_2_5_accy ON sdf_2_5_speed.bookingID=sdf_2_5_accy.bookingID\
LEFT JOIN sdf_2_5_accz ON sdf_2_5_speed.bookingID=sdf_2_5_accz.bookingID\
LEFT JOIN sdf_2_5_gyrox ON sdf_2_5_speed.bookingID=sdf_2_5_gyrox.bookingID\
LEFT JOIN sdf_2_5_gyroy ON sdf_2_5_speed.bookingID=sdf_2_5_gyroy.bookingID\
LEFT JOIN sdf_2_5_gyroz ON sdf_2_5_speed.bookingID=sdf_2_5_gyroz.bookingID\
LEFT JOIN sdf_2_5_acc3d ON sdf_2_5_speed.bookingID=sdf_2_5_acc3d.bookingID\
LEFT JOIN sdf_2_5_gyro3d ON sdf_2_5_speed.bookingID=sdf_2_5_gyro3d.bookingID\
LEFT JOIN sdf_2_5_acc3dgyro3d ON sdf_2_5_speed.bookingID=sdf_2_5_acc3dgyro3d.bookingID")
sdf_2_6.registerTempTable('sdf_2_6')
## Feature Engineering final ##
# Create final aggregated feature table
sdf_final = spark.sql(
"SELECT sdf_1_5.*,\
sdf_2_6.speed_max_inc_num,\
sdf_2_6.accx_max_inc_num,\
sdf_2_6.accy_max_inc_num,\
sdf_2_6.accz_max_inc_num,\
sdf_2_6.gyrox_max_inc_num,\
sdf_2_6.gyroy_max_inc_num,\
sdf_2_6.gyroz_max_inc_num,\
sdf_2_6.acc3d_max_inc_num,\
sdf_2_6.gyro3d_max_inc_num,\
sdf_2_6.acc3dgyro3d_max_inc_num\
FROM sdf_1_5\
LEFT JOIN sdf_2_6 ON sdf_1_5.bookingID=sdf_2_6.bookingID")
sdf_final.registerTempTable('sdf_final')
# Create feature file
try:
sdf_final.coalesce(1).write.mode('overwrite').csv(_dirpath, header=True)
except Exception as e:
logger.error('Failed to create features')
logger.error('Exception on create_features(): '+str(e))
raise
if __name__ == '__main__':
logger.info('create_features.py start!')
start = time.time()
logger.info('Load data files from ' + _telematics_data_dir + _csv_filenames)
sdf_raw = load_data_into_spark(_filepath=_telematics_data_dir+_csv_filenames)
logger.info('create_agg_features() start')
create_agg_features(_dirpath=_feature_data_dir, _sdf_raw=sdf_raw)
process_time = round(time.time() - start, 2)
logger.info('Elapsed time: ' + str(process_time) + 'sec')
logger.info('create_features.py completed!')