-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathrandom-forest.R
55 lines (41 loc) · 2.13 KB
/
random-forest.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
library(randomForest)
library(ggplot2)
# To get relative paths to work, must first setwd to project root
passengers <- read.csv(paste(getwd(), "/data/train.csv", sep=""),
comment.char="", quote="\"", sep=",", header=TRUE, stringsAsFactors=FALSE,
colClasses=c("integer", "integer", "integer", "character", "character", "numeric", "integer", "integer", "character", "numeric", "character", "character"))
passengers$Survived <- factor(passengers$Survived)
# Let's get some stats on the surivors & doomed
survivors.idx <- which(passengers$Survived == T)
survivors <- passengers[survivors.idx,]
doomed <- passengers[-survivors.idx,]
# Factorize!
prepFeatures <- function(df) {
df$Sex <- factor(df$Sex)
df$Pclass <- factor(df$Pclass)
df$Age[is.na(df$Age)] <- mean(df$Age, na.rm=T)
return(df)
}
passengers <- prepFeatures(passengers)
# Sample ggplot2-based plots for exploratory analysis
print(qplot(Sex, data=passengers, fill=Survived))
print(qplot(Fare, data=passengers, colour=Survived, geom="density"))
trainForestModel <- function(trainFrame, cols, trees=500) {
model <- randomForest(Survived ~ ., data=trainFrame[, c("Survived", cols)], ntree=trees)
print(model)
return(model)
}
# TODO - what columns are important to you?
model <- trainForestModel(passengers, c())
# Load Kaggle's test data
testdata <- read.csv(paste(getwd(), "/data/test.csv", sep=""),
comment.char="", quote="\"", sep=",", header=TRUE, stringsAsFactors=FALSE,
colClasses=c("integer", "integer", "character", "character", "numeric", "integer", "integer", "character", "numeric", "character", "character"))
testdata <- prepFeatures(testdata)
# And predict results
prediction <- predict(model, newdata=testdata, type="class")
# And let's write our prediction results
out.frame <- data.frame(PassengerId=testdata$PassengerId, survived=prediction)
# TODO - if there are any NAs let's assume they didn't survive for now
out.frame$survived[is.na(out.frame$survived)] <- 0
write.table(out.frame, file=paste(getwd(), "/prediction.csv", sep=""), sep=",", quote=FALSE, col.names=TRUE, row.names=FALSE)