-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_generator.py
167 lines (137 loc) · 5.8 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import skimage
from skimage import exposure
from skimage.color import rgb2gray
from skimage.draw import circle
from matplotlib.pyplot import imshow, imread, imsave
import keras
import tensorflow as tf
import numpy as np
import pandas as pd
from scipy import ndimage as ndi
import time
from skimage.util import img_as_ubyte, img_as_float
import random
import cv2
from utils.config import *
import imgaug as ia
from imgaug import augmenters as iaa
from skimage.transform import rescale, resize
# Based on Keras Sequence Class
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, df,hist_equal=False, augment_data=False, batch_size=2, target_size=Config.SHAPE, shuffle=True,save_images=False, input_channels=3, output="both"):
'Initialization'
self.df = df
self.hist_equal = hist_equal
self.augment_data = augment_data
self.batch_size = batch_size
self.target_size = target_size
self.shuffle = shuffle
self.save_images = save_images
self.input_channels = input_channels
self.output = output
self.save_index = 0
self.mask_channels = 1
self.__init_info()
self.on_epoch_end()
self.seq = iaa.Sequential([
iaa.SomeOf((0, 4), [
iaa.OneOf([
iaa.GaussianBlur(sigma=(0, 0.5)),
iaa.Sharpen(alpha=(0.0, 0.7)),
]),
iaa.Fliplr(0.5, name="to_mask"),
iaa.Flipud(0.5, name="to_mask"),
#iaa.Crop(px=(0, 6), name="to_mask"),
iaa.Affine(scale=(0.7,1.0),translate_percent={"x": (-0.3, 0.3), "y": (-0.3, 0.3)}, name="to_mask"),
]),
], random_order=True)
self.seq_img = iaa.Sequential([
iaa.Add((-60,60)),
])
self.seq_norm = iaa.Sequential([
iaa.CLAHE(),
iaa.LinearContrast(alpha=1.0)
])
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.df) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate data
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
tmp_df = self.df.iloc[indexes]
imgs, masks = self.__data_generation(tmp_df)
#imgs = self.preprocess_input(imgs)
return imgs,masks
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.df))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, tmp_df):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
imgs = np.empty((self.batch_size, *self.target_size, self.input_channels),dtype=float)
if self.output == "both":
masks = np.empty((self.batch_size, *self.target_size, 2))
else:
masks = np.empty((self.batch_size, *self.target_size, 1))
# Generate data
ind = 0
for _, row in tmp_df.iterrows():
img = imread(row['image_path']+row['name'])
msk_leaf = imread('../data/00_all/masks_leaf-segmentation/'+row['name'])
msk_root = imread('../data/00_all/masks_root-estimation/'+row['name'])
img = resize(img,self.target_size)
msk_leaf = resize(msk_leaf,self.target_size)
msk_root = resize(msk_root,self.target_size)
#assert img.shape[2] == 3, "Number of Color Channels must be 3"
#img = self.__normalize(img)
if self.hist_equal == True:
img = (img*255).astype("uint8")
img = self.seq_norm.augment_image(img)
img = img.astype(float)/255.0
if self.augment_data == True:
img, msk_leaf, msk_root = self.__augment_data(img,msk_leaf,msk_root)
imgs[ind,] = img.reshape(*self.target_size, self.input_channels)
if self.output == "both":
masks[ind,:,:,0] = msk_leaf
masks[ind,:,:,1] = msk_root
if self.output == "leaf":
masks[ind,:,:,0] = msk_leaf
if self.output == "root":
masks[ind,:,:,0] = msk_root
ind += 1
#return imgs, masks[:,:,:,0].reshape(self.batch_size,*self.target_size,1)
return imgs, masks
def __augment_data(self,img,msk_leaf,msk_root):
img = (img*255).astype("uint8")
msk_leaf = (msk_leaf*255).astype("uint8")
msk_root = (msk_root*255).astype("uint8")
img = self.seq_img.augment_image(img)
seq_det = self.seq.to_deterministic()
img = seq_det.augment_image(img)
msk_leaf = seq_det.augment_image(msk_leaf.reshape(*self.target_size,1))
msk_leaf = msk_leaf.reshape(*self.target_size)
msk_root = seq_det.augment_image(msk_root.reshape(*self.target_size))
msk_root = msk_root.reshape(*self.target_size)
img = img.astype(float)/255.0
msk_leaf = msk_leaf.astype(float)/255.0
msk_root = msk_root.astype(float)/255.0
return img, msk_leaf, msk_root
def __normalize(self,img):
img -= img.mean()
img /= (img.std() +1e-5)
img *= 0.1
img += 0.5
img = np.clip(img,0,1)
return img
def __save_data(self,img,mask):
self.save_index += 1
imsave(Config.DATA_BASE_PATH+'/SaveDir/' + 'img_' + str(self.save_index) + '.png',img,cmap='gray')
imsave(Config.DATA_BASE_PATH+'/SaveDir/' + 'msk_' + str(self.save_index) + '.png',mask,cmap='gray')
def __init_info(self):
print("Found " + str(len(self.df)) + " Files")