-
Notifications
You must be signed in to change notification settings - Fork 0
/
d0_extract_chembl_approved_CHEMBL_details.py
47 lines (37 loc) · 1.56 KB
/
d0_extract_chembl_approved_CHEMBL_details.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from pathlib import Path
import json
import pandas as pd
def extract_chembl_data(csv_file_path: str) -> dict:
"""
Extract ChEMBL drug data from a CSV file.
Args:
csv_file_path (str): The path of the CSV file to parse.
Returns:
dict: Dictionary of drugs where each drug is mapped to its properties.
"""
# Load the CSV file
chembl_data = pd.read_csv(csv_file_path, delimiter=';')
# Dictionary to store drug information
chembl_info_dict = {}
# Process each row in the dataframe
for _, row in chembl_data.iterrows():
chembl_id = row['Parent Molecule']
smiles = row['Smiles']
if smiles and pd.notna(row['Smiles']):
drug_info = {
'title': row['Name'] if (row['Name'] and pd.notna(row['Name'])) else None,
'synonyms': row['Synonyms'].split('|') if (row['Synonyms'] and pd.notna(row['Synonyms'])) else None,
'smiles': smiles,
'atc_code': row['ATC Codes'] if (row['ATC Codes'] and pd.notna(row['ATC Codes'])) else None,
}
chembl_info_dict[f"{chembl_id}_approved"] = drug_info
return chembl_info_dict
def main():
csv_file_path = "./data/chembl_approved/chembl_approved_drugs.csv"
chembl_info = extract_chembl_data(csv_file_path)
output_path = Path("./data/chembl_approved/chembl_approved_details.json")
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, "w") as f:
json.dump(chembl_info, f, indent=4)
if __name__ == "__main__":
main()