-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMBGD_UR_BN.m
139 lines (129 loc) · 5.41 KB
/
MBGD_UR_BN.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function [EntropyTrain,AccTest,mStepSize,stdStepSize]=...
MBGD_UR_BN(XTrain,yTrain,XTest,yTest,alpha,eta,lambda,nRules,nIt,Nbs)
% alpha: initial learning rate
% eta: L2 regularization coefficient
% lambda: uniform regularization coefficient
% nRules: number of rules
% nIt: maximum number of iterations
% Nbs: batch size
beta1=0.9; beta2=0.999; epsilon=1e-8;
[N,D]=size(XTrain); NTest=size(XTest,1);
classLabels=unique(yTrain); C=length(classLabels);
Nbs=min(N,Nbs);
B=2*rand(nRules,D+1,C)-1; % Rule consequents
% k-means initialization
[~,M,sumd] = kmeans(XTrain,nRules,'replicate',3);
M=M'; sumd(sumd==0)=mean(sumd); Sigma=repmat(sumd',D,1)/D;
minSigma=0.01*min(Sigma(:));
MTrain=mean(XTrain); Sigma2Train=var(XTrain);
%% Iterative update
EntropyTrain=zeros(1,nIt); AccTest=EntropyTrain; mStepSize=EntropyTrain; stdStepSize=EntropyTrain;
mM=0; vM=0; mB=0; mSigma=0; vSigma=0; vB=0; pPred=nan(Nbs,C);
mGamma=0; vGamma=0; mBeta=0; vBeta=0; gamma=1; beta=0;
yPred=nan(1,C); yR=zeros(nRules,C,Nbs);
for it=1:nIt
deltaC=zeros(D,nRules); deltaSigma=deltaC; deltaB=2*eta*B; deltaB(:,1)=0; % consequent
deltaGamma=0; deltaBeta=0;
f=ones(Nbs,nRules); % firing level of rules
fBar=f;
idsTrain=datasample(1:N,Nbs,'replace',false);
Mbs=mean(XTrain(idsTrain,:));
Sigma2bs=var(XTrain(idsTrain,:));
XTrainBN0=(XTrain(idsTrain,:)-repmat(Mbs,Nbs,1))./sqrt(repmat(Sigma2bs,Nbs,1)+epsilon);
XTrainBN=gamma*XTrainBN0+beta; % batch normalized input
for n=1:Nbs
for r=1:nRules
f(n,r)=prod(exp(-(XTrain(idsTrain(n),:)'-M(:,r)).^2./(2*Sigma(:,r).^2)));
end
fBar(n,:)=f(n,:)/sum(f(n,:));
for c=1:C
yR(:,c,n)=B(:,:,c)*[1; XTrainBN(n,:)'];
yPred(c)=fBar(n,:)*yR(:,c,n); % prediction
end
pPred(n,:)=exp(yPred);
pPred(n,:)=pPred(n,:)/sum(pPred(n,:));
end
% Compute delta
for n=1:Nbs
temp1=zeros(Nbs,nRules);
for r=1:nRules
for i=1:nRules
temp1(n,r)=temp1(n,r)+(sum(fBar(:,i))/Nbs-1/nRules)*((i==r)-fBar(n,i));
end
end
temp2=sum(temp1)*2*lambda/Nbs;
for c=1:C
temp0=pPred(n,c)-(c==yTrain(idsTrain(n)));
for r=1:nRules
temp=temp0*(yR(r,c)-fBar(n,:)*yR(:,c))*fBar(n,r);
if ~isnan(temp) && abs(temp)<inf
% delta of c, sigma, and b
for d=1:D
deltaC(d,r)=deltaC(d,r)+temp*(XTrain(idsTrain(n),d)-M(d,r))/Sigma(d,r)^2 ...
+temp2(r)*fBar(n,r)*(XTrain(idsTrain(n),d)-M(d,r))/Sigma(d,r)^2;
deltaSigma(d,r)=deltaSigma(d,r)+temp*(XTrain(idsTrain(n),d)-M(d,r))^2/Sigma(d,r)^3 ...
+temp2(r)*fBar(n,r)*(XTrain(idsTrain(n),d)-M(d,r))^2/Sigma(d,r)^3;
deltaB(r,d+1,c)=deltaB(r,d+1,c)+temp0*fBar(n,r)*XTrainBN(n,d);
deltaGamma=deltaGamma+temp0*fBar(r)*B(r,d+1,c)*XTrainBN0(n,d);
deltaBeta=deltaBeta+temp0*fBar(r)*B(r,d+1,c);
end
% delta of b0
deltaB(r,1,c)=deltaB(r,1,c)+temp0*fBar(n,r);
end
end
end
% Training cross-entropy error
EntropyTrain(it)=EntropyTrain(it)-log(pPred(n,yTrain(idsTrain(n)))); % only count cross-entropy
end
% Test error
XTestBN=gamma*(XTest-repmat(MTrain,NTest,1))./sqrt(repmat(Sigma2Train,NTest,1)+epsilon)+beta; % batch normalized input
yPredTest=nan(NTest,1);
f=ones(1,nRules); % firing level of rules
for n=1:NTest
for r=1:nRules
f(r)=prod(exp(-(XTest(n,:)'-M(:,r)).^2./(2*Sigma(:,r).^2)));
end
for c=1:C
yR(:,c)=B(:,:,c)*[1; XTestBN(n,:)'];
yPred(c)=f*yR(:,c); % prediction
end
[~,yPredTest(n)]=max(yPred);
end
AccTest(it)=mean(yPredTest==yTest);
% AdaBound
mM=beta1*mM+(1-beta1)*deltaC;
vM=beta2*vM+(1-beta2)*deltaC.^2;
mMHat=mM/(1-beta1^it);
vMHat=vM/(1-beta2^it);
mSigma=beta1*mSigma+(1-beta1)*deltaSigma;
vSigma=beta2*vSigma+(1-beta2)*deltaSigma.^2;
mSigmaHat=mSigma/(1-beta1^it);
vSigmaHat=vSigma/(1-beta2^it);
mB=beta1*mB+(1-beta1)*deltaB;
vB=beta2*vB+(1-beta2)*deltaB.^2;
mBHat=mB/(1-beta1^it);
vBHat=vB/(1-beta2^it);
mGamma=beta1*mGamma+(1-beta1)*deltaGamma;
vGamma=beta2*vGamma+(1-beta2)*deltaGamma.^2;
mGammaHat=mGamma/(1-beta1^it);
vGammaHat=vGamma/(1-beta2^it);
mBeta=beta1*mBeta+(1-beta1)*deltaBeta;
vBeta=beta2*vBeta+(1-beta2)*deltaBeta.^2;
mBetaHat=mBeta/(1-beta1^it);
vBetaHat=vBeta/(1-beta2^it);
% update C, Sigma and B, using AdaBound
lb=alpha*(1-1/((1-beta2)*it+1));
ub=alpha*(1+1/((1-beta2)*it));
lrM=min(ub,max(lb,alpha./(sqrt(vMHat)+10^(-8))));
M=M-lrM.*mMHat;
lrSigma=min(ub,max(lb,alpha./(sqrt(vSigmaHat)+10^(-8))));
Sigma=max(minSigma,Sigma-lrSigma.*mSigmaHat);
lrB=min(ub,max(lb,alpha./(sqrt(vBHat)+10^(-8))));
B=B-lrB.*mBHat;
lrGamma=min(ub,max(lb,alpha./(sqrt(vGammaHat)+10^(-8))));
gamma=gamma-lrGamma.*mGammaHat;
lrBeta=min(ub,max(lb,alpha./(sqrt(vBetaHat)+10^(-8))));
beta=beta-lrBeta.*mBetaHat;
lr=[lrM(:); lrSigma(:); lrB(:)];
mStepSize(it)=mean(lr); stdStepSize(it)=std(lr);
end