-
Notifications
You must be signed in to change notification settings - Fork 19
/
paper.bib
54 lines (49 loc) · 2.2 KB
/
paper.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
@article{Cha2007,
title={Comprehensive survey on distance/similarity measures between probability density functions},
author={Cha, Sung-Hyuk},
journal={International Journal of Mathematical Models and Methods in Applied Science},
volume={1},
number={4},
pages={300-307},
year={2007}
}
@article{Drost2018,
author = {Drost, Hajk-Georg and Gabel, Alexander and Liu, Jialin and Quint, Marcel and Grosse, Ivo},
title = {myTAI: evolutionary transcriptomics with R},
journal = {Bioinformatics},
volume = {34},
number = {9},
pages = {1589-1590},
year = {2018},
doi = {10.1093/bioinformatics/btx835},
URL = {http://dx.doi.org/10.1093/bioinformatics/btx835}
}
@INPROCEEDINGS{Phannachitta2017,
author={P. Phannachitta},
booktitle={2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)},
title={Robust comparison of similarity measures in analogy based software effort estimation},
year={2017},
volume={},
number={},
pages={1-7},
keywords={project management;software cost estimation;software management;statistical testing;ABE model;ABE process;accurate estimation;analogy based software effort estimation;effort values;estimated effort value;retrieved past similar projects;robust comparison;robust performance measures;robust statistical test method;similar past projects;simple similarity measures;software effort estimation datasets;software project cases;Bibliographies;Estimation;Euclidean distance;Pollution measurement;Robustness;Software;Software measurement;Analogy-based effort estimation;Distance function;Empirical software engineering;Similarity measure;Software effort estimation},
doi={10.1109/SKIMA.2017.8294126},
ISSN={},
month={Dec},}
@Manual{R2018,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2018},
url = {https://www.R-project.org/},
}
@Book{Eddelbuettel2013,
title = {Seamless {R} and {C++} Integration with {Rcpp}},
author = {Dirk Eddelbuettel},
publisher = {Springer},
address = {New York},
year = {2013},
series = {Use R!},
note = {{ISBN} 978-1-4614-6867-7}
}