-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcleanedData.py
37 lines (26 loc) · 1.24 KB
/
cleanedData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import pandas as pd
# Converts into dataframe
df = pd.read_csv("states.csv")
# Find null values in dataset
null_values = df.isnull().sum()
# Prints which features have null values
print("Null values:")
print(null_values)
print()
# Iterates over columns in dataframe
for column in df.columns:
# If null, finds average for that column and replaces with this value
if df[column].isnull().any():
column_average = df[column].mean()
df[column].fillna(column_average, inplace = True)
# Reprints
null_values = df.isnull().sum()
print(null_values)
df['State'] = df['State'].str.strip()
print(df[['State', 'Uninsured Rate (2010)', 'Uninsured Rate (2015)', 'Uninsured Rate Change (2010-2015)', 'Health Insurance Coverage Change (2010-2015)']])
print(df[['Employer Health Insurance Coverage (2015)', 'Marketplace Health Insurance Coverage (2016)', 'Marketplace Tax Credits (2016)', 'Average Monthly Tax Credit (2016)']])
print(df[['State Medicaid Expansion (2016)', 'Medicaid Enrollment (2013)', 'Medicaid Enrollment (2016)', 'Medicaid Enrollment Change (2013-2016)', 'Medicare Enrollment (2016)']])
df_noDC = df[df['State'] != 'District of Columbia'].reset_index(drop=True)
print(df_noDC)
df_noUS = df_noDC[:-1]
print(df_noUS)