-
Notifications
You must be signed in to change notification settings - Fork 494
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Multi-label classification - how to start #548
Comments
Hello, you should have a look at this : https://www.kaggle.com/code/optimo/tabnetmultitaskclassifier If all your tasks are classification then you just need to follow this notebook and you should be good to go. |
I am trying to replicate the example on my data. I preprocessed the data using a label encoder and filling the NA, and same for the two target columns. Then I defined categorical_dims as the list of unique values for each categorical variable (targets excluded) get the following error with the model defined like this: clf = TabNetMultiTaskClassifier(
n_steps=1,
cat_idxs=cat_idxs,
cat_dims=cat_dims,
cat_emb_dim=12,
optimizer_fn=torch.optim.Adam,
optimizer_params=dict(lr=2e-2),
scheduler_params={"step_size":50, "gamma":0.9},
scheduler_fn=torch.optim.lr_scheduler.StepLR,
mask_type='entmax',
lambda_sparse=0,
) ---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
Cell In[61], [line 3]
[1] max_epochs = 2
----> [3] clf.fit(
[4] X_train=X_train.values, y_train=y_train.values,
[5] max_epochs=max_epochs ,
[6] batch_size=1024,
[7] virtual_batch_size=12
[8] num_workers=1,
[9] drop_last=False,
[10])
File pytorch_tabnet\abstract_model.py:258, in TabModel.fit(self, X_train, y_train, eval_set, eval_name, eval_metric, loss_fn, weights, max_epochs, patience, batch_size, virtual_batch_size, num_workers, drop_last, callbacks, pin_memory, from_unsupervised, warm_start, augmentations, compute_importance)
(pytorch_tabnet/abstract_model.py:253) for epoch_idx in range(self.max_epochs):
(pytorch_tabnet/abstract_model.py:254)
(pytorch_tabnet/abstract_model.py:255) # Call method on_epoch_begin for all callbacks
(pytorch_tabnet/abstract_model.py:256) self._callback_container.on_epoch_begin(epoch_idx)
--> (pytorch_tabnet/abstract_model.py:258) self._train_epoch(train_dataloader)
(pytorch_tabnet/abstract_model.py:260) # Apply predict epoch to all eval sets
(pytorch_tabnet/abstract_model.py:261) for eval_name, valid_dataloader in zip(eval_names, valid_dataloaders):
File pytorch_tabnet\abstract_model.py:489, in TabModel._train_epoch(self, train_loader)
(pytorch_tabnet/abstract_model.py:486) for batch_idx, (X, y) in enumerate(train_loader):
(pytorch_tabnet/abstract_model.py:487) self._callback_container.on_batch_begin(batch_idx)
--> (pytorch_tabnet/abstract_model.py:489) batch_logs = self._train_batch(X, y)
(pytorch_tabnet/abstract_model.py:491) self._callback_container.on_batch_end(batch_idx, batch_logs)
(pytorch_tabnet/abstract_model.py:493) epoch_logs = {"lr": self._optimizer.param_groups[-1]["lr"]}
File pytorch_tabnet\abstract_model.py:527, in TabModel._train_batch(self, X, y)
(pytorch_tabnet/abstract_model.py:524) for param in self.network.parameters():
(pytorch_tabnet/abstract_model.py:525) param.grad = None
--> (pytorch_tabnet/abstract_model.py:527) output, M_loss = self.network(X)
(pytorch_tabnet/abstract_model.py:529) loss = self.compute_loss(output, y)
(pytorch_tabnet/abstract_model.py:530) # Add the overall sparsity loss
File torch\nn\modules\module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
(torch/nn/modules/module.py:1530) return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
(torch/nn/modules/module.py:1531) else:
-> (torch/nn/modules/module.py:1532) return self._call_impl(*args, **kwargs)
File torch\nn\modules\module.py:1541, in Module._call_impl(self, *args, **kwargs)
(torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in
(torch/nn/modules/module.py:1537) # this function, and just call forward.
(torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
(torch/nn/modules/module.py:1539) or _global_backward_pre_hooks or _global_backward_hooks
(torch/nn/modules/module.py:1540) or _global_forward_hooks or _global_forward_pre_hooks):
-> (torch/nn/modules/module.py:1541) return forward_call(*args, **kwargs)
(torch/nn/modules/module.py:1543) try:
(torch/nn/modules/module.py:1544) result = None
File pytorch_tabnet\tab_network.py:615, in TabNet.forward(self, x)
(pytorch_tabnet/tab_network.py:614) def forward(self, x):
--> (pytorch_tabnet/tab_network.py:615) x = self.embedder(x)
(pytorch_tabnet/tab_network.py:616) return self.tabnet(x)
File torch\nn\modules\module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
(torch/nn/modules/module.py:1530) return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
(torch/nn/modules/module.py:1531) else:
-> (torch/nn/modules/module.py:1532) return self._call_impl(*args, **kwargs)
File torch\nn\modules\module.py:1541, in Module._call_impl(self, *args, **kwargs)
(torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in
(torch/nn/modules/module.py:1537) # this function, and just call forward.
(torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
(torch/nn/modules/module.py:1539) or _global_backward_pre_hooks or _global_backward_hooks
(torch/nn/modules/module.py:1540) or _global_forward_hooks or _global_forward_pre_hooks):
-> (torch/nn/modules/module.py:1541) return forward_call(*args, **kwargs)
(torch/nn/modules/module.py:1543) try:
(torch/nn/modules/module.py:1544) result = None
File pytorch_tabnet\tab_network.py:890, in EmbeddingGenerator.forward(self, x)
(pytorch_tabnet/tab_network.py:887) cols.append(x[:, feat_init_idx].float().view(-1, 1))
(pytorch_tabnet/tab_network.py:888) else:
(pytorch_tabnet/tab_network.py:889) cols.append(
--> (pytorch_tabnet/tab_network.py:890) self.embeddings[cat_feat_counter](x[:, feat_init_idx].long())
(pytorch_tabnet/tab_network.py:891) )
(pytorch_tabnet/tab_network.py:892) cat_feat_counter += 1
(pytorch_tabnet/tab_network.py:893) # concat
File torch\nn\modules\module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
(torch/nn/modules/module.py:1530) return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
(torch/nn/modules/module.py:1531) else:
-> (torch/nn/modules/module.py:1532) return self._call_impl(*args, **kwargs)
File torch\nn\modules\module.py:1541, in Module._call_impl(self, *args, **kwargs)
(torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in
(torch/nn/modules/module.py:1537) # this function, and just call forward.
(torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
(torch/nn/modules/module.py:1539) or _global_backward_pre_hooks or _global_backward_hooks
(torch/nn/modules/module.py:1540) or _global_forward_hooks or _global_forward_pre_hooks):
-> (torch/nn/modules/module.py:1541) return forward_call(*args, **kwargs)
(torch/nn/modules/module.py:1543) try:
(torch/nn/modules/module.py:1544) result = None
File torch\nn\modules\sparse.py:163, in Embedding.forward(self, input)
(torch/nn/modules/sparse.py:162) def forward(self, input: Tensor) -> Tensor:
--> (torch/nn/modules/sparse.py:163) return F.embedding(
(torch/nn/modules/sparse.py:164) input, self.weight, self.padding_idx, self.max_norm,
(torch/nn/modules/sparse.py:165) self.norm_type, self.scale_grad_by_freq, self.sparse)
File torch\nn\functional.py:2264, in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)
(torch/nn/functional.py:2258) # Note [embedding_renorm set_grad_enabled]
(torch/nn/functional.py:2259) # XXX: equivalent to
(torch/nn/functional.py:2260) # with torch.no_grad():
(torch/nn/functional.py:2261) # torch.embedding_renorm_
(torch/nn/functional.py:2262) # remove once script supports set_grad_enabled
(torch/nn/functional.py:2263) _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> torch/nn/functional.py:2264) return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
IndexError: index out of range in self |
Looks like one of the categories is out of range, you must have integers between 0 and cat_dim-1 for each categorical column. |
Hello,
I am new to TabNet and I would like to use it for a Multi-label classification task.
I have a pandas dataset with mixed columns (numerical and categorical) and I would like to classify two different columns with mulitple values, let's say COMPANY and ROLE.
Which model class should I use? How should I prepare the numerical data? How should I prepare the categorical data? How do I pass the data and the targets?
Some help would really be appreciated, thank you!
The text was updated successfully, but these errors were encountered: