Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multi-label classification - how to start #548

Open
santurini opened this issue Jul 4, 2024 · 3 comments
Open

Multi-label classification - how to start #548

santurini opened this issue Jul 4, 2024 · 3 comments
Assignees
Labels
enhancement New feature or request

Comments

@santurini
Copy link

Hello,
I am new to TabNet and I would like to use it for a Multi-label classification task.
I have a pandas dataset with mixed columns (numerical and categorical) and I would like to classify two different columns with mulitple values, let's say COMPANY and ROLE.

Which model class should I use? How should I prepare the numerical data? How should I prepare the categorical data? How do I pass the data and the targets?

Some help would really be appreciated, thank you!

@santurini santurini added the enhancement New feature or request label Jul 4, 2024
@Optimox
Copy link
Collaborator

Optimox commented Jul 4, 2024

Hello, you should have a look at this : https://www.kaggle.com/code/optimo/tabnetmultitaskclassifier

If all your tasks are classification then you just need to follow this notebook and you should be good to go.

@santurini
Copy link
Author

I am trying to replicate the example on my data. I preprocessed the data using a label encoder and filling the NA, and same for the two target columns. Then I defined categorical_dims as the list of unique values for each categorical variable (targets excluded) get the following error with the model defined like this:

clf = TabNetMultiTaskClassifier(
    n_steps=1,
    cat_idxs=cat_idxs,
    cat_dims=cat_dims,
    cat_emb_dim=12,
    optimizer_fn=torch.optim.Adam,
    optimizer_params=dict(lr=2e-2),
    scheduler_params={"step_size":50, "gamma":0.9},
    scheduler_fn=torch.optim.lr_scheduler.StepLR,
    mask_type='entmax',
    lambda_sparse=0, 
)
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
Cell In[61], [line 3]
      [1] max_epochs = 2
----> [3] clf.fit(
      [4]     X_train=X_train.values, y_train=y_train.values,
      [5]     max_epochs=max_epochs ,
      [6]     batch_size=1024,
      [7]     virtual_batch_size=12
      [8]     num_workers=1,
      [9]     drop_last=False,
     [10])

File pytorch_tabnet\abstract_model.py:258, in TabModel.fit(self, X_train, y_train, eval_set, eval_name, eval_metric, loss_fn, weights, max_epochs, patience, batch_size, virtual_batch_size, num_workers, drop_last, callbacks, pin_memory, from_unsupervised, warm_start, augmentations, compute_importance)
    (pytorch_tabnet/abstract_model.py:253) for epoch_idx in range(self.max_epochs):
    (pytorch_tabnet/abstract_model.py:254) 
    (pytorch_tabnet/abstract_model.py:255)     # Call method on_epoch_begin for all callbacks
    (pytorch_tabnet/abstract_model.py:256)     self._callback_container.on_epoch_begin(epoch_idx)
--> (pytorch_tabnet/abstract_model.py:258)     self._train_epoch(train_dataloader)
    (pytorch_tabnet/abstract_model.py:260)     # Apply predict epoch to all eval sets
    (pytorch_tabnet/abstract_model.py:261)     for eval_name, valid_dataloader in zip(eval_names, valid_dataloaders):

File pytorch_tabnet\abstract_model.py:489, in TabModel._train_epoch(self, train_loader)
    (pytorch_tabnet/abstract_model.py:486) for batch_idx, (X, y) in enumerate(train_loader):
    (pytorch_tabnet/abstract_model.py:487)     self._callback_container.on_batch_begin(batch_idx)
--> (pytorch_tabnet/abstract_model.py:489)     batch_logs = self._train_batch(X, y)
    (pytorch_tabnet/abstract_model.py:491)     self._callback_container.on_batch_end(batch_idx, batch_logs)
    (pytorch_tabnet/abstract_model.py:493) epoch_logs = {"lr": self._optimizer.param_groups[-1]["lr"]}

File pytorch_tabnet\abstract_model.py:527, in TabModel._train_batch(self, X, y)
    (pytorch_tabnet/abstract_model.py:524) for param in self.network.parameters():
    (pytorch_tabnet/abstract_model.py:525)     param.grad = None
--> (pytorch_tabnet/abstract_model.py:527) output, M_loss = self.network(X)
    (pytorch_tabnet/abstract_model.py:529) loss = self.compute_loss(output, y)
    (pytorch_tabnet/abstract_model.py:530) # Add the overall sparsity loss

File torch\nn\modules\module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
   (torch/nn/modules/module.py:1530)     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   (torch/nn/modules/module.py:1531) else:
-> (torch/nn/modules/module.py:1532)     return self._call_impl(*args, **kwargs)

File torch\nn\modules\module.py:1541, in Module._call_impl(self, *args, **kwargs)
   (torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in
   (torch/nn/modules/module.py:1537) # this function, and just call forward.
   (torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   (torch/nn/modules/module.py:1539)         or _global_backward_pre_hooks or _global_backward_hooks
   (torch/nn/modules/module.py:1540)         or _global_forward_hooks or _global_forward_pre_hooks):
-> (torch/nn/modules/module.py:1541)     return forward_call(*args, **kwargs)
   (torch/nn/modules/module.py:1543) try:
  (torch/nn/modules/module.py:1544)     result = None

File pytorch_tabnet\tab_network.py:615, in TabNet.forward(self, x)
    (pytorch_tabnet/tab_network.py:614) def forward(self, x):
--> (pytorch_tabnet/tab_network.py:615)     x = self.embedder(x)
    (pytorch_tabnet/tab_network.py:616)     return self.tabnet(x)

File torch\nn\modules\module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
   (torch/nn/modules/module.py:1530)     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   (torch/nn/modules/module.py:1531) else:
-> (torch/nn/modules/module.py:1532)     return self._call_impl(*args, **kwargs)

File torch\nn\modules\module.py:1541, in Module._call_impl(self, *args, **kwargs)
   (torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in
   (torch/nn/modules/module.py:1537) # this function, and just call forward.
   (torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   (torch/nn/modules/module.py:1539)         or _global_backward_pre_hooks or _global_backward_hooks
   (torch/nn/modules/module.py:1540)         or _global_forward_hooks or _global_forward_pre_hooks):
-> (torch/nn/modules/module.py:1541)     return forward_call(*args, **kwargs)
   (torch/nn/modules/module.py:1543) try:
   (torch/nn/modules/module.py:1544)     result = None

File pytorch_tabnet\tab_network.py:890, in EmbeddingGenerator.forward(self, x)
    (pytorch_tabnet/tab_network.py:887)         cols.append(x[:, feat_init_idx].float().view(-1, 1))
    (pytorch_tabnet/tab_network.py:888)     else:
    (pytorch_tabnet/tab_network.py:889)         cols.append(
--> (pytorch_tabnet/tab_network.py:890)             self.embeddings[cat_feat_counter](x[:, feat_init_idx].long())
    (pytorch_tabnet/tab_network.py:891)         )
    (pytorch_tabnet/tab_network.py:892)         cat_feat_counter += 1
    (pytorch_tabnet/tab_network.py:893) # concat

File torch\nn\modules\module.py:1532, in Module._wrapped_call_impl(self, *args, **kwargs)
   (torch/nn/modules/module.py:1530)     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   (torch/nn/modules/module.py:1531) else:
-> (torch/nn/modules/module.py:1532)     return self._call_impl(*args, **kwargs)

File torch\nn\modules\module.py:1541, in Module._call_impl(self, *args, **kwargs)
   (torch/nn/modules/module.py:1536) # If we don't have any hooks, we want to skip the rest of the logic in
   (torch/nn/modules/module.py:1537) # this function, and just call forward.
   (torch/nn/modules/module.py:1538) if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   (torch/nn/modules/module.py:1539)         or _global_backward_pre_hooks or _global_backward_hooks
   (torch/nn/modules/module.py:1540)         or _global_forward_hooks or _global_forward_pre_hooks):
-> (torch/nn/modules/module.py:1541)     return forward_call(*args, **kwargs)
   (torch/nn/modules/module.py:1543) try:
   (torch/nn/modules/module.py:1544)     result = None

File torch\nn\modules\sparse.py:163, in Embedding.forward(self, input)
    (torch/nn/modules/sparse.py:162) def forward(self, input: Tensor) -> Tensor:
--> (torch/nn/modules/sparse.py:163)     return F.embedding(
    (torch/nn/modules/sparse.py:164)         input, self.weight, self.padding_idx, self.max_norm,
    (torch/nn/modules/sparse.py:165)         self.norm_type, self.scale_grad_by_freq, self.sparse)

File torch\nn\functional.py:2264, in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)
   (torch/nn/functional.py:2258)     # Note [embedding_renorm set_grad_enabled]
   (torch/nn/functional.py:2259)     # XXX: equivalent to
   (torch/nn/functional.py:2260)     # with torch.no_grad():
   (torch/nn/functional.py:2261)     #   torch.embedding_renorm_
   (torch/nn/functional.py:2262)     # remove once script supports set_grad_enabled
   (torch/nn/functional.py:2263)     _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> torch/nn/functional.py:2264) return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)

IndexError: index out of range in self

@Optimox
Copy link
Collaborator

Optimox commented Jul 11, 2024

Looks like one of the categories is out of range, you must have integers between 0 and cat_dim-1 for each categorical column.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

3 participants