-
Notifications
You must be signed in to change notification settings - Fork 0
/
hashfn.c
392 lines (356 loc) · 14.1 KB
/
hashfn.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// src/aksl/hashfn.c 2018-3-4 Alan U. Kennington.
/*-----------------------------------------------------------------------------
Copyright (C) 1989-2018, Alan U. Kennington.
You may distribute this software under the terms of Alan U. Kennington's
modified Artistic Licence, as specified in the accompanying LICENCE file.
-----------------------------------------------------------------------------*/
/*------------------------------------------------------------------------------
Functions in this file:
hashtab_32_8::
insert
append
prepend
find
del
n_entries
first
next
hashtab_32_16::
insert
append
prepend
find
first
next
hashtab_str_8::
insert
append
prepend
find
first
next
------------------------------------------------------------------------------*/
#include "aksl/hashfn.h"
static const int mask8 = 0xff;
static const int mask16 = 0xffff;
/*------------------------------------------------------------------------------
This insert/find algorithm only works if a void* fits into a long.
This function will always over-write an existing entry for the given key.
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_32_8::insert //
//----------------------//
// void hashtab_32_8::insert(void* data, uint32 key) {
void hashtab_32_8::insert(const void* data, uint32 key) {
int h = int(hashfn_32_8(key)) & mask8;
table[h].insert(data, long(key));
} // End of function hashtab_32_8::insert.
/*------------------------------------------------------------------------------
This append/find algorithm only works if a void* fits into a long.
Note that this function does _not_ call voidptrkeylist::insert. For speed, the
append function is used instead.
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_32_8::append //
//----------------------//
void hashtab_32_8::append(void* data, uint32 key) {
int h = int(hashfn_32_8(key)) & mask8;
table[h].append(data, long(key));
} // End of function hashtab_32_8::append.
/*------------------------------------------------------------------------------
This prepend/find algorithm only works if a void* fits into a long.
Note that this function does _not_ call voidptrkeylist::insert. For speed, the
prepend function is used instead.
------------------------------------------------------------------------------*/
//--------------------------//
// hashtab_32_8::prepend //
//--------------------------//
void hashtab_32_8::prepend(void* data, uint32 key) {
int h = int(hashfn_32_8(key)) & mask8;
table[h].prepend(data, long(key));
} // End of function hashtab_32_8::prepend.
//----------------------//
// hashtab_32_8::find //
//----------------------//
// bool_enum hashtab_32_8::find(void*& data, uint32 key) {
bool_enum hashtab_32_8::find(const void*& data, uint32 key) {
int h = int(hashfn_32_8(key)) & mask8;
return table[h].find_data(data, long(key)) ? true : false;
} // End of function hashtab_32_8::find.
/*------------------------------------------------------------------------------
This first finds the specified entry, and then deletes it from the hash table.
Returns "true" iff there was an entry for that key to delete.
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_32_8::del //
//----------------------//
bool_enum hashtab_32_8::del(uint32 key) {
// Hash the key.
int h = int(hashfn_32_8(key)) & mask8;
// Remove the entry for the given key, if any.
voidptrkey* p = table[h].remove_key(long(key));
if (!p)
return false;
// Delete the entry if it is found.
delete p;
return true;
} // End of function hashtab_32_8::del.
//--------------------------//
// hashtab_32_8::n_entries //
//--------------------------//
long hashtab_32_8::n_entries() {
long x = 0;
for (int i = 0; i < tab8size; ++i)
x += table[i].length();
return x;
} // End of function hashtab_32_8::n_entries.
/*------------------------------------------------------------------------------
This function leaves the members trav_i and trav_ptr positioned for the next
traversal access.
Clearly it is not possible to have two concurrent traversals of a single object
by this method.
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_32_8::first //
//----------------------//
voidptrkey* hashtab_32_8::first(int* pi) {
for (trav_i = 0; trav_i < tab8size; ++trav_i) {
trav_ptr = table[trav_i].first();
if (trav_ptr)
break;
}
if (pi)
*pi = trav_i;
return trav_ptr;
} // End of function hashtab_32_8::first.
/*------------------------------------------------------------------------------
The intended calling sequence is to call first() first, which initialises the
traversal pointers. Then next() is called until it returns null. The order of
the pointers thus returned is not particularly monotonic with respect to "key".
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_32_8::next //
//----------------------//
voidptrkey* hashtab_32_8::next(int* pi) {
// If at the end of the traversal, return null pointer:
if (!trav_ptr || trav_i >= tab8size) {
if (pi)
*pi = trav_i;
return 0;
}
// Increment the traversal pointer. If non-null for same i, return this:
trav_ptr = trav_ptr->next();
if (trav_ptr) {
if (pi)
*pi = trav_i;
return trav_ptr;
}
// If current i is exhausted, try the rest of the array:
for (++trav_i ; trav_i < tab8size; ++trav_i) {
trav_ptr = table[trav_i].first();
if (trav_ptr)
break;
}
if (pi)
*pi = trav_i;
return trav_ptr;
} // End of function hashtab_32_8::next.
/*------------------------------------------------------------------------------
This function will always over-write an existing entry for the given key.
------------------------------------------------------------------------------*/
//--------------------------//
// hashtab_32_16::insert //
//--------------------------//
void hashtab_32_16::insert(void* data, uint32 key) {
int h = int(hashfn_32_16(key)) & mask16;
table[h].insert(data, long(key));
} // End of function hashtab_32_16::insert.
/*------------------------------------------------------------------------------
Note that this function does _not_ call voidptrkeylist::insert. For speed, the
append function is used instead.
------------------------------------------------------------------------------*/
//--------------------------//
// hashtab_32_16::append //
//--------------------------//
void hashtab_32_16::append(void* data, uint32 key) {
int h = int(hashfn_32_16(key)) & mask16;
table[h].append(data, long(key));
} // End of function hashtab_32_16::append.
/*------------------------------------------------------------------------------
Note that this function does _not_ call voidptrkeylist::insert. For speed, the
prepend function is used instead.
------------------------------------------------------------------------------*/
//--------------------------//
// hashtab_32_16::prepend //
//--------------------------//
void hashtab_32_16::prepend(void* data, uint32 key) {
int h = int(hashfn_32_16(key)) & mask16;
table[h].prepend(data, long(key));
} // End of function hashtab_32_16::prepend.
//----------------------//
// hashtab_32_16::find //
//----------------------//
// bool_enum hashtab_32_16::find(void*& data, uint32 key) {
bool_enum hashtab_32_16::find(const void*& data, uint32 key) {
int h = int(hashfn_32_16(key)) & mask16;
return table[h].find_data(data, long(key)) ? true : false;
} // End of function hashtab_32_16::find.
//--------------------------//
// hashtab_32_16::n_entries //
//--------------------------//
long hashtab_32_16::n_entries() {
long x = 0;
for (int i = 0; i < tab16size; ++i)
x += table[i].length();
return x;
} // End of function hashtab_32_16::n_entries.
/*------------------------------------------------------------------------------
This function leaves the members trav_i and trav_ptr positioned for the next
traversal access.
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_32_16::first //
//----------------------//
voidptrkey* hashtab_32_16::first(int* pi) {
for (trav_i = 0; trav_i < tab16size; ++trav_i) {
trav_ptr = table[trav_i].first();
if (trav_ptr)
break;
}
if (pi)
*pi = trav_i;
return trav_ptr;
} // End of function hashtab_32_16::first.
/*------------------------------------------------------------------------------
The intended calling sequence is to call first() first, which initialises the
traversal pointers. Then next() is called until it returns null. The order of
the pointers thus returned is not particularly monotonic with respect to "key".
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_32_16::next //
//----------------------//
voidptrkey* hashtab_32_16::next(int* pi) {
// If at the end of the traversal, return null pointer:
if (!trav_ptr || trav_i >= tab16size) {
if (pi)
*pi = trav_i;
return 0;
}
// Increment the traversal pointer. If non-null for same i, return this:
trav_ptr = trav_ptr->next();
if (trav_ptr) {
if (pi)
*pi = trav_i;
return trav_ptr;
}
// If current i is exhausted, try the rest of the array:
for (++trav_i ; trav_i < tab16size; ++trav_i) {
trav_ptr = table[trav_i].first();
if (trav_ptr)
break;
}
if (pi)
*pi = trav_i;
return trav_ptr;
} // End of function hashtab_32_16::next.
/*------------------------------------------------------------------------------
This function will always over-write an existing entry for the given key.
This could be quite slow, since string sort/insert is used.
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_str_8::insert//
//----------------------//
void hashtab_str_8::insert(void* data, const char* key) {
int h = int(hashfn_str_8(key)) & mask8;
table[h].insert(data, key);
} // End of function hashtab_str_8::insert.
/*------------------------------------------------------------------------------
Note that this function does _not_ call voidptrstrlist::insert. For speed, the
append function is used instead.
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_str_8::append//
//----------------------//
void hashtab_str_8::append(void* data, const char* key) {
int h = int(hashfn_str_8(key)) & mask8;
table[h].append(data, key);
} // End of function hashtab_str_8::append.
/*------------------------------------------------------------------------------
Note that this function does _not_ call voidptrstrlist::insert. For speed, the
prepend function is used instead.
------------------------------------------------------------------------------*/
//--------------------------//
// hashtab_str_8::prepend //
//--------------------------//
void hashtab_str_8::prepend(void* data, const char* key) {
int h = int(hashfn_str_8(key)) & mask8;
table[h].prepend(data, key);
} // End of function hashtab_str_8::prepend.
//----------------------//
// hashtab_str_8::find //
//----------------------//
bool_enum hashtab_str_8::find(void*& data, const char* key) {
int h = int(hashfn_str_8(key)) & mask8;
return table[h].find_data(data, key) ? true : false;
} // End of function hashtab_str_8::find.
/*------------------------------------------------------------------------------
This is slow!
------------------------------------------------------------------------------*/
//--------------------------//
// hashtab_str_8::n_entries //
//--------------------------//
long hashtab_str_8::n_entries() {
long x = 0;
for (int i = 0; i < tab8size; ++i)
x += table[i].length();
return x;
} // End of function hashtab_str_8::n_entries.
/*------------------------------------------------------------------------------
This function leaves the members trav_i and trav_ptr positioned for the next
traversal access.
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_str_8::first //
//----------------------//
voidptrstr* hashtab_str_8::first(int* pi) {
for (trav_i = 0; trav_i < tab8size; ++trav_i) {
trav_ptr = table[trav_i].first();
if (trav_ptr)
break;
}
if (pi)
*pi = trav_i;
return trav_ptr;
} // End of function hashtab_str_8::first.
/*------------------------------------------------------------------------------
The intended calling sequence is to call first() first, which initialises the
traversal pointers. Then next() is called until it returns null. The order of
the pointers thus returned is not particularly monotonic with respect to "key".
------------------------------------------------------------------------------*/
//----------------------//
// hashtab_str_8::next //
//----------------------//
voidptrstr* hashtab_str_8::next(int* pi) {
// If at the end of the traversal, return null pointer:
if (!trav_ptr || trav_i >= tab8size) {
if (pi)
*pi = trav_i;
return 0;
}
// Increment the traversal pointer. If non-null for same i, return this:
trav_ptr = trav_ptr->next();
if (trav_ptr) {
if (pi)
*pi = trav_i;
return trav_ptr;
}
// If current i is exhausted, try the rest of the array:
for (++trav_i ; trav_i < tab8size; ++trav_i) {
trav_ptr = table[trav_i].first();
if (trav_ptr)
break;
}
if (pi)
*pi = trav_i;
return trav_ptr;
} // End of function hashtab_str_8::next.