-
Notifications
You must be signed in to change notification settings - Fork 46
/
run_from_pkl.py
155 lines (133 loc) · 5.78 KB
/
run_from_pkl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2021 Beijing DP Technology Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run Uni-Fold with preprocessed protein features (features.pkl)."""
import glob
import os
import pickle
from absl import app, flags, logging
from unifold.inference.inference_pipeline import predict_from_pkl
from unifold.model.config import model_config as get_model_config
from unifold.model.model import RunModel
from unifold.train.mixed_precision import normalize_precision
from unifold.train.utils import load_params
from unifold.relax.relax import AmberRelaxation
flags.DEFINE_list(
'pickle_paths', None, 'Paths to processed protein features (.pkl), '
'separated by commas.')
flags.DEFINE_string(
'pickle_dir', None, 'Path to a directory which contains sub-folders of '
'processed protein features (.pkl), each named as `<name>/features.pkl`. '
'Used for automatically predicting all feature files under the directory. '
'See `./example_data/features` for an example. This argument is ignored '
'if `pickle_paths` is set.')
flags.DEFINE_list(
'model_names', None, 'Names of models to use, separated by commas. Each '
'model name should correspond to a model configuration in '
'`unifold/model/config.py`')
flags.DEFINE_list(
'model_paths', None, 'Paths of saved models, separated by commas. Must '
'be in *.npz format.')
flags.DEFINE_string(
'output_dir', None, 'Path to a directory that will store the results.')
flags.DEFINE_string(
'precision', 'fp32', 'Precision used in inference. Uni-Fold supports '
'inferencing with float32 (\'fp32\'), float16 (\'fp16\') and bfloat16 '
'(\'bf16\'). Generally, using lower precisions does not siginificantly '
'influence the accuracies, yet faster inference may be achieved.')
flags.DEFINE_bool(
'use_amber_relax', True, 'Whether to use the Amber99 Force Field to relax '
'the predicted structure.')
flags.DEFINE_integer(
'random_seed', 181129, 'The random seed used for model prediction. This '
'majorly influences how MSAs are sampled and clustered.')
flags.DEFINE_bool(
'benchmark', False, 'Whether to re-run the model to derive JAX model '
'running time without compilation. Only set True if you want to derive '
'the clean running time on GPU.')
flags.DEFINE_bool(
'dump_pickle', True, 'Whether to dump the model output in pickle format. '
'If set True, pickled results will be saved.')
FLAGS = flags.FLAGS
# Configurations for the AmberRelaxer.
# Uni-Fold used the same setups as AlphaFold2.
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
RELAX_MAX_OUTER_ITERATIONS = 20
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
if FLAGS.pickle_dir is None and FLAGS.pickle_paths is None:
raise app.UsageError("Must provide `pickle_dir` or `pickle_paths`.")
if FLAGS.pickle_dir is not None and FLAGS.pickle_paths is not None:
logging.warning(f"`pickle_dir` {FLAGS.pickle_dir} is ignored, as "
f"`pickle_paths` {FLAGS.pickle_paths} is provided.")
precision = normalize_precision(FLAGS.precision)
model_runners = {}
for model_name, model_path in zip(FLAGS.model_names, FLAGS.model_paths):
model_config = get_model_config(model_name, is_training=False)
model_params = load_params(model_path)
model_runner = RunModel(
config=model_config,
params=model_params,
precision=precision)
model_runners[model_name] = model_runner
logging.info(f"Input {len(model_runners)} models with "
f"names: {list(model_runners.keys())}.")
if FLAGS.use_amber_relax:
amber_relaxer = AmberRelaxation(
max_iterations=RELAX_MAX_ITERATIONS,
tolerance=RELAX_ENERGY_TOLERANCE,
stiffness=RELAX_STIFFNESS,
exclude_residues=RELAX_EXCLUDE_RESIDUES,
max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS)
else:
amber_relaxer = None
random_seed = FLAGS.random_seed if FLAGS.random_seed is not None else 0
logging.info(f"Using random seed {random_seed} for the data pipeline")
if FLAGS.pickle_paths: # use protein id 'prot_{idx}' of given list.
protein_dict = {
f'prot_{idx:05d}': p for idx, p in enumerate(FLAGS.pickle_paths)}
else: # use basename of sub-directories as protein ids.
sub_dirs = [
p for p in glob.glob(os.path.join(FLAGS.pickle_dir, '*'))
if os.path.isdir(p)]
protein_dict = {
os.path.basename(p): os.path.join(p, "features.pkl")
for p in sub_dirs}
for id, feature_path in protein_dict.items():
with open(feature_path, 'rb') as fp:
features = pickle.load(fp)
try:
predict_from_pkl(
features=features,
name=id,
output_dir=FLAGS.output_dir,
model_runners=model_runners,
amber_relaxer=amber_relaxer,
random_seed=random_seed,
benchmark=FLAGS.benchmark,
dump_pickle=FLAGS.dump_pickle,
timings=None)
except Exception as ex:
logging.warning(f"failed to predict structure for protein {id} with "
f"feature path {feature_path}. Error message: \n{ex}")
if __name__ == '__main__':
flags.mark_flags_as_required([
'output_dir',
'model_names',
'model_paths'
])
app.run(main)