Skip to content
This repository has been archived by the owner on Jan 23, 2025. It is now read-only.

Commit

Permalink
comment in prints
Browse files Browse the repository at this point in the history
  • Loading branch information
Dimitrios Panteleimon Giakatos committed Jan 4, 2022
1 parent a5e5bf3 commit 37a46d4
Show file tree
Hide file tree
Showing 3 changed files with 10 additions and 8 deletions.
8 changes: 4 additions & 4 deletions heuristic.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,10 @@ def __col_fil_movies(self, user, item):
else:
continue
data = self.graph.get_edge_data(movie['label'], item['label'])
print(data)
# print(data)
if data is None:
continue
print(edge, data)
# print(edge, data)
k += data['similarity']
sim_r += data['similarity'] * edge[2]['rating']
return (1 / k) * sim_r if k else 0
Expand All @@ -40,10 +40,10 @@ def __col_fil_users(self, user, item):
else:
continue
data = self.graph.get_edge_data(user_1['label'], user['label'])
print(data)
# print(data)
if data is None:
continue
print(edge, data)
# print(edge, data)
k += data['similarity']
sim_r += data['similarity'] * edge[2]['rating']
return (1 / k) * sim_r if k else 0
Expand Down
2 changes: 1 addition & 1 deletion learning.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def get_x_y(self, edges):
self.clustering[movie['label']], self.degree_centrality[movie['label']],
self.closeness_centrality[movie['label']], self.betweenness_centrality[movie['label']]]
for genre in self.embedding.transform(movie['genres']):
print(genre)
# print(genre)
features.append(float(genre))
# print(features)
x.append(features) # [useId, movieId, genre1, genre2, ...]
Expand Down
8 changes: 5 additions & 3 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ def get_mlps(input_1, input_2):
# graph.init(dataset_directory='data/dataset/')
# graph.export_gexf(directory='data/graph/')
# exit(0)
graph.read_gexf('data/graph/graph.gexf')
graph.read_gexf('data/graph/graph0_6.gexf')
graph_train, test_edges = graph.split_train_test(0.2)
print(len(test_edges))

Expand All @@ -54,11 +54,13 @@ def get_mlps(input_1, input_2):
hybrid_features, hybrid_target = hybrid.get_x_y(graph_train.edges(data=True))
mlps = get_mlps(learning_features, hybrid_features)
mlps.fit([learning_features, hybrid_features], learning_target, batch_size=1000, epochs=70)
loss = mlps.evaluate([test_x_l, test_x_h], test_y_h)
rec_m = mlps.predict([test_x_l, test_x_h])
# loss = mlps.evaluate([test_x_l, test_x_h], test_y_h)

##### EVALUATION #####
Evaluation.model_evaluation(test_edges, rec_e)
Evaluation.model_evaluation(test_edges, rec_l)
Evaluation.model_evaluation(test_edges, rec_h)
Evaluation.model_evaluation(test_edges, rec_m)

print(f"Mean squared error: {loss}")
# print(f"Mean squared error: {loss}")

0 comments on commit 37a46d4

Please sign in to comment.