Skip to content

Commit

Permalink
Merge branch 'master' of github.com:dpeerlab/Palantir
Browse files Browse the repository at this point in the history
  • Loading branch information
katosh committed Nov 30, 2024
2 parents d5d13be + 4d0f031 commit e8a03c7
Show file tree
Hide file tree
Showing 5 changed files with 31 additions and 6 deletions.
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,10 @@ Release Notes
* `run_magic_imputation` now has a boolean parameter `sparse` to control output sparsity
* **bugfix**: `run_local_variability` for dense expression arrays now runs much faster and more accurate

### Version 1.3.5rc
* `run_magic_imputation` now has a boolean parameter `sparse` to control output sparsity

>>>>>>> 4d0f0314270d4c8463fa8fd69a217ac1a6491f6a
### Version 1.3.4
* avoid devision by zero in `select_branch_cells` for very small datasets
* make branch selection robust against NaNs
Expand Down
25 changes: 21 additions & 4 deletions src/palantir/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -588,6 +588,8 @@ def run_magic_imputation(
expression_key: str = None,
imputation_key: str = "MAGIC_imputed_data",
n_jobs: int = -1,
sparse: bool = True,
clip_threshold: float = 1e-2,
) -> Union[pd.DataFrame, None, csr_matrix]:
"""
Run MAGIC imputation on the data.
Expand All @@ -611,6 +613,10 @@ def run_magic_imputation(
Key to store the imputed data in layers of data if it is a sc.AnnData object. Default is 'MAGIC_imputed_data'.
n_jobs : int, optional
Number of cores to use for parallel processing. If -1, all available cores are used. Default is -1.
sparse : bool, optional
If True, sets values below `clip_threshold` to 0 to return a sparse matrix. If False, return a dense matrix. Default is True.
clip_threshold: float, optional
Threshold value for setting values to 0 when returning a sparse matrix. Default is 1e-2. Unused if `sparse` is False.
Returns
-------
Expand Down Expand Up @@ -656,20 +662,31 @@ def run_magic_imputation(

# Stack the results together
if issparse(X):
imputed_data = hstack(res).todense()
imputed_data = hstack(res)
else:
imputed_data = np.hstack(res)

# Set small values to zero
imputed_data[imputed_data < 1e-2] = 0
# Set small values to zero if returning sparse matrix
if sparse:
if issparse(X):
imputed_data.data[imputed_data.data < clip_threshold] = 0
imputed_data.eliminate_zeros()
else:
imputed_data = np.where(imputed_data < clip_threshold, 0, imputed_data)
imputed_data = csr_matrix(imputed_data)
else:
if issparse(X):
imputed_data = imputed_data.todense()

# Clean up
gc.collect()

if isinstance(data, sc.AnnData):
data.layers[imputation_key] = np.asarray(imputed_data)
data.layers[imputation_key] = imputed_data

if isinstance(data, pd.DataFrame):
if issparse(imputed_data):
imputed_data = imputed_data.toarray()
imputed_data = pd.DataFrame(
imputed_data, index=data.index, columns=data.columns
)
Expand Down
2 changes: 1 addition & 1 deletion src/palantir/version.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
__version__ = "1.3.4"
__version__ = "1.3.5rc"
__author__ = "Palantir development team"
__author_email__ = "manu.talanki@gmail.com"
6 changes: 5 additions & 1 deletion tests/utils_run_magic_imputation.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ def mock_dm_res():
def test_run_magic_imputation_ndarray(mock_dm_res):
data = np.random.rand(50, 20)
result = run_magic_imputation(data, dm_res=mock_dm_res)
assert isinstance(result, csr_matrix)
result = run_magic_imputation(data, dm_res=mock_dm_res, sparse=False)
assert isinstance(result, np.ndarray)


Expand All @@ -30,6 +32,8 @@ def test_run_magic_imputation_dataframe(mock_dm_res):
def test_run_magic_imputation_csr(mock_dm_res):
data = csr_matrix(np.random.rand(50, 20))
result = run_magic_imputation(data, dm_res=mock_dm_res)
assert isinstance(result, csr_matrix)
result = run_magic_imputation(data, dm_res=mock_dm_res, sparse=False)
assert isinstance(result, np.ndarray)


Expand All @@ -39,7 +43,7 @@ def test_run_magic_imputation_anndata():
data.obsp["DM_Similarity"] = np.random.rand(50, 50)
result = run_magic_imputation(data)
assert "MAGIC_imputed_data" in data.layers
assert isinstance(result, np.ndarray)
assert isinstance(result, csr_matrix)


# Test with AnnData and custom keys
Expand Down
File renamed without changes.

0 comments on commit e8a03c7

Please sign in to comment.