-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
function to predict efps using sentinel 2 added
- Loading branch information
Showing
6 changed files
with
364 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
# VI functions | ||
|
||
bi2 <- function(red, green, nir, red_factor = 1, green_factor = 1, nir_factor =1) { | ||
BI2 = sqrt( ( (red_factor * red * red_factor * red) + (green_factor * green * green_factor * green) + (nir_factor * nir * nir_factor * nir) ) / 3 ) | ||
return(BI2) | ||
} | ||
|
||
bi <- function(red, green, red_factor = 1, green_factor = 1) { | ||
BI = sqrt( ( (red_factor * red * red_factor * red) + (green_factor * green * green_factor * green) ) / 2 ) | ||
return(BI) | ||
} | ||
|
||
ci <- function(red, green, red_factor = 1, green_factor = 1) { | ||
CI = (red_factor * red - green_factor * green) / (red_factor * red + green_factor * green) | ||
return(CI) | ||
} | ||
|
||
ri <- function(red, green, red_factor = 1, green_factor = 1) { | ||
RI = (red_factor * red * red_factor * red) / (green_factor * green * green_factor * green * green_factor * green) | ||
return(RI) | ||
} | ||
|
||
arvi <- function(red, blue, nir, red_factor = 1, blue_factor = 1, nir_factor = 1, gamma = 1) { | ||
rb = (red_factor * red) - gamma * (blue_factor * blue - red_factor * red) | ||
ARVI = (nir_factor * nir - rb) / (nir_factor * nir + rb) | ||
return(ARVI) | ||
} | ||
|
||
dvi <- function(red, nir, red_factor = 1, nir_factor = 1) { | ||
DVI = (nir_factor * nir - red_factor * red) | ||
return(DVI) | ||
} | ||
|
||
gemi <- function(red, nir, red_factor = 1, nir_factor = 1) { | ||
eta = (2 * (nir_factor * nir * nir_factor * nir - red_factor * red * red_factor * red) + 1.5 * nir_factor * nir + 0.5 * red_factor * red) / (nir_factor * nir + red_factor * red + 0.5) | ||
|
||
GEMI = eta * (1 - 0.25 * eta) - (red_factor * red - 0.125) / (1 - red_factor * red) | ||
return(GEMI) | ||
} | ||
|
||
gndvi <- function(green, nir, green_factor = 1, nir_factor = 1) { | ||
GNDVI = (nir_factor * nir - green_factor * green) / (nir_factor * nir + green_factor * green) | ||
return(GNDVI) | ||
} | ||
|
||
ipvi <- function(red, nir, red_factor = 1, nir_factor = 1) { | ||
IPVI = (nir_factor * nir) / (nir_factor * nir + red_factor * red) | ||
return(IPVI) | ||
} | ||
|
||
ireci <- function(red_b4, red_b5, red_b6, nir_b7, red_b4_factor = 1, red_b5_factor = 1, red_b6_factor = 1, nir_b7_factor = 1){ | ||
IRECI = (nir_b7_factor * nir_b7_factor - red_b4_factor * red_b4) / (red_b5_factor * red_b5 / red_b6_factor * red_b6) | ||
return(IRECI) | ||
} | ||
|
||
# ireci with B8 by BAA?? | ||
|
||
mcari <- function(red_b4, red_b5, green, red_b4_factor = 1, red_b5_factor = 1, green_factor = 1){ | ||
MCARI = ((red_b5_factor * red_b5 - red_b4_factor * red_b4) - 0.2 * (red_b5_factor * red_b5 - green_factor * green)) * (red_b5_factor * red_b5 / red_b4_factor * red_b4) | ||
return(MCARI) | ||
} | ||
|
||
msavi2 <- function(red, nir, red_factor = 1, nir_factor = 1) { | ||
MSAVI2 = (1/2) * ( 2 * nir_factor * nir + 1 - sqrt( ( 2 * nir_factor * nir + 1) * ( 2 * nir_factor * nir + 1) - 8 * (nir_factor * nir - red_factor * red) ) ) | ||
} | ||
|
||
msavi <- function(red, nir, red_factor = 1, nir_factor = 1, slope = 0.5) { | ||
L = 1 - 2 * slope * ((nir_factor * nir - red_factor * red)/(nir_factor * nir + red_factor * red)) * (nir_factor * nir - slope * red_factor * red) | ||
MSAVI = (1 + L) * (nir_factor * nir - red_factor * red) / (nir_factor * nir + red_factor * red + L) | ||
return(MSAVI) | ||
} | ||
|
||
mtci <- function(red_b4, red_b5, nir_b6, red_b4_factor = 1, red_b5_factor = 1, nir_b6_factor = 1) { | ||
MTCI = (nir_b6_factor * nir_b6 - red_b5_factor * red_b5) / (red_b5_factor * red_b5 - red_b4_factor * red_b4) | ||
return(MTCI) | ||
} | ||
|
||
ndi45 <- function(red_b4, nir_b5, red_b4_factor = 1, nir_b5_factor = 1) { | ||
NDI45 = (nir_b5_factor * nir_b5 - red_b4_factor * red_b4) / (nir_b5_factor * nir_b5 + red_b4_factor * red_b4) | ||
return(NDI45) | ||
} | ||
|
||
pssra <- function(red_b4, nir_b7, red_b4_factor = 1, nir_b7_factor = 1) { | ||
PSSRa = (nir_b7_factor * nir_b7) / (red_b4_factor * red_b4) | ||
return(PSSRa) | ||
} | ||
|
||
pvi <- function(red_b4, nir_b8, red_b4_factor = 1, nir_b8_factor = 1, angle_soil_line = 45){ | ||
PVI = sin(angle_soil_line) * nir_b8_factor * nir_b8 - cos(angle_soil_line) * red_b4_factor * red_b4 | ||
return(PVI) | ||
} | ||
|
||
reip <- function(red_b4, red_b5, red_b6, nir_b7, red_b4_factor = 1, red_b5_factor =1, red_b6_factor = 1, nir_b7_factor = 1){ | ||
REIP = 700 + 40 * ( (red_b4_factor * red_b4 + nir_b7_factor * nir_b7)/2 - red_b5_factor * red_b5) / (red_b6_factor * red_b6 - red_b5_factor * red_b5) | ||
return(REIP) | ||
} | ||
|
||
rvi <- function(red_b4, nir_b8, red_b4_factor = 1, nir_b8_factor = 1) { | ||
RVI = (nir_b8_factor * nir_b8) / (red_b4_factor * red_b4) | ||
return(RVI) | ||
} | ||
|
||
|
||
s2rep <- function(red_b4, red_b5, red_b6, nir_b7, red_b4_factor = 1, red_b5_factor = 1, red_b6_factor = 1, nir_b7_factor = 1){ | ||
S2REP = 705 + 35 * ( (red_b4_factor * red_b4 + nir_b7_factor * nir_b7)/2 - red_b5_factor * red_b5) / (red_b6_factor * red_b6 - red_b5_factor * red_b5) | ||
return(S2REP) | ||
} | ||
|
||
savi <- function(red_b4, nir_b8, red_b4_factor =1, nir_b8_factor = 1, soil_correction = 0.5){ | ||
SAVI = (1 + soil_correction) * (nir_b8_factor * nir_b8 - red_b4_factor * red_b4) / (nir_b8_factor * nir_b8 + red_b4_factor * red_b4 + soil_correction) | ||
return(SAVI) | ||
} | ||
|
||
tndvi <- function(red_b4, nir_b8, red_b4_factor = 1, nir_b8_factor = 1){ | ||
TNDVI = sqrt( (nir_b8_factor * nir_b8 - red_b4_factor * red_b4) / (nir_b8_factor * nir_b8 + red_b4_factor * red_b4) + 0.5) | ||
return(TNDVI) | ||
} | ||
|
||
tsavi <- function(red_b4, nir_b8, red_b4_factor = 1, nir_b8_factor = 1, slope = 0.5, intercept = 0.5, adjustment = 0.08) { | ||
TSAVI = slope * (nir_b8_factor * nir_b8 - slope * red_b4_factor * red_b4 - intercept) / (slope * nir_b8_factor * nir_b8 + red_b4_factor * red_b4 - intercept * slope + adjustment * ( 1 + slope * slope )) | ||
return(TSAVI) | ||
} | ||
|
||
|
||
wdvi <- function(red_b4, nir_b8, red_b4_factor = 1, nir_b8_factor = 1, slope = 0.5) { | ||
WDVI = (nir_b8_factor * nir_b8 - slope * red_b4_factor * red_b4) | ||
return(WDVI) | ||
} | ||
|
||
cir <- function(red_b5, red_b7, red_b5_factor = 1, red_b7_factor = 1) { | ||
CIR = ((red_b7_factor * red_b7) / (red_b5_factor * red_b5)) -1 | ||
return(CIR) | ||
} | ||
|
||
cig <- function(green, red_b7, green_factor = 1, red_b7_factor = 1) { | ||
CIG = ((red_b7_factor * red_b7) / (green_factor * green)) -1 | ||
} | ||
|
||
ndvi <- function(red_b4, nir_b8, red_b4_factor = 1, nir_b8_factor = 1) { | ||
NDVI = (nir_b8_factor * nir_b8 - red_b4_factor * red_b4) / (nir_b8_factor + nir_b8 - red_b4_factor * red_b4) | ||
return(NDVI) | ||
} | ||
|
||
nirv <- function(red_b4, nir_b8, red_b4_factor = 1, nir_b8_factor = 1) { | ||
NIRV = ((nir_b8_factor * nir_b8 - red_b4_factor * red_b4) / (nir_b8_factor + nir_b8 - red_b4_factor * red_b4)) * nir_b8_factor * nir_b8 | ||
} | ||
|
||
all_vi <- function(red, blue, green, red_b4, red_b5, red_b6, red_b7, nir, nir_b5, nir_b6, nir_b7, nir_b8){ | ||
r1 <- bi2(red = red, green = green, nir = nir) | ||
r2 <- bi(red = red, green = green) | ||
r3 <- ci(red = red, green = green) | ||
r4 <- ri(red = red, green = green) | ||
r5 <- arvi(red = red, blue = blue, nir = nir) | ||
r6 <- dvi(red = red, nir = nir) | ||
r7 <- gemi(red = red, nir = nir) | ||
r8 <- gndvi(green = green, nir = nir) | ||
r9 <- ipvi(red = red, nir = nir) | ||
r10 <- ireci(red_b4 = red_b4, red_b5 = red_b5, red_b6 = red_b6, nir_b7 = nir_b7) | ||
r11 <- mcari(red_b4 = red_b4, red_b5 = red_b5, green = green) | ||
r12 <- msavi2(red = red, nir = nir) | ||
r13 <- msavi(red = red, nir = nir) | ||
r14 <- mtci(red_b4 = red_b4, red_b5 = red_b5, nir_b6 = nir_b6) | ||
r15 <- ndi45(red_b4 = red_b4, nir_b5 = nir_b5) | ||
r16 <- pssra(red_b4 = red_b4, nir_b7 = nir_b7) | ||
r17 <- pvi(red_b4 = red_b4, nir_b8 = nir_b8) | ||
r18 <- reip(red_b4 = red_b4, red_b5 = red_b5, red_b6 = red_b6, nir_b7 = nir_b7) | ||
r19 <- rvi(red_b4 = red_b4, nir_b8 = nir_b8) | ||
r20 <- s2rep(red_b4 = red_b4, red_b5 = red_b5, red_b6 = red_b6, nir_b7 = nir_b7) | ||
r21 <- savi(red_b4 = red_b4, nir_b8 = nir_b8) | ||
r22 <- tndvi(red_b4 = red_b4, nir_b8 = nir_b8) | ||
r23 <- tsavi(red_b4 = red_b4, nir_b8 = nir_b8) | ||
r24 <- wdvi(red_b4 = red_b4, nir_b8 = nir_b8) | ||
r25 <- cir(red_b5 = red_b5, red_b7 = red_b7) | ||
r26 <- cig(green = green, red_b7 = red_b7) | ||
r27 <- ndvi(red_b4 = red_b4, nir_b8 = nir_b8) | ||
r28 <- nirv(red_b4 = red_b4, nir_b8 = nir_b8) | ||
output <- stack(r1, | ||
r2, | ||
r3, | ||
r4, | ||
r5, | ||
r6, | ||
r7, | ||
r8, | ||
r9, | ||
r10, | ||
r11, | ||
r12, | ||
r13, | ||
r14, | ||
r15, | ||
r16, | ||
r17, | ||
r18, | ||
r19, | ||
r20, | ||
r21, | ||
r22, | ||
r23, | ||
r24, | ||
r25, | ||
r26, | ||
r27, | ||
r28) | ||
names(output) <- c("bi2_mean", | ||
"bi_mean", | ||
"ci_mean", | ||
"ri_mean", | ||
"arvi_mean", | ||
"dvi_mean", | ||
"gemi_mean", | ||
"gndvi_mean", | ||
"ipvi_mean", | ||
"ireci_mean", | ||
"mcari_mean", | ||
"msavi2_mean", | ||
"msavi_mean", | ||
"mtci_mean", | ||
"ndi45_mean", | ||
"pssra_mean", | ||
"pvi_mean", | ||
"reip_mean", | ||
"rvi_mean", | ||
"s2rep_mean", | ||
"savi_mean", | ||
"tndvi_mean", | ||
"tsavi_mean", | ||
"wdvi_mean", | ||
"cir_mean", | ||
"cig_mean", | ||
"ndvi_mean", | ||
"nirv_mean") | ||
return(output) | ||
} | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
#' Predicting Ecosystem Functional Properties using Sentinel-2 | ||
#' | ||
#' This function use pre-trained regression trees to predict GPP and GPPsat. | ||
#' | ||
#' @param sentinel2_product The path to a Sentinel-2 L2A product downloaded from https://scihub.copernicus.eu/ or generated with sen2cor. (String) | ||
#' @param product Can be "gpp", "gppsat", or "all". | ||
#' | ||
#' @return | ||
#' An object of class raster if product = "gpp" or "gppsat".If class = "all" the output is a stack raster. | ||
#' @export | ||
#' | ||
#' @examples | ||
sentinel2.efps <- function(sentinel2_product, product = "gpp") { | ||
library(rgdal) | ||
library(raster) | ||
library(randomForest) | ||
|
||
images <- Sys.glob(file.path(sentinel2_product, "GRANULE", "*", "IMG_DATA", "*", "*")) | ||
length(images) | ||
bands_20m_for_forest <- c("B2_mean", "B3_mean", "B4_mean", "B5_mean", "B6_mean", "B7_mean", "B11_mean", "B12_mean", "B8A_mean") | ||
|
||
images.position <- c(9:17) | ||
|
||
bands20.raster <- stack(readGDAL(images[images.position[1]])) | ||
|
||
for (i in 2:length(images.position)){ | ||
bands20.raster <- addLayer(bands20.raster, stack(readGDAL(images[images.position[i]]))) | ||
} | ||
|
||
names(bands20.raster) <- bands_20m_for_forest | ||
|
||
# bands to resample | ||
|
||
B08 <- raster(readGDAL(images[5])) | ||
B08 <- resample(B08, bands20.raster$B2_mean, method = "ngb") | ||
bands20.raster <- addLayer(bands20.raster, B08) | ||
names(bands20.raster)[length(names(bands20.raster))] <- "B8_mean" | ||
rm(B08) | ||
gc() | ||
|
||
B01 <- raster(readGDAL(images[22])) | ||
B09 <- raster(readGDAL(images[29])) | ||
|
||
B01 <- resample(B01, bands20.raster$B2_mean, method = "ngb") | ||
B09 <- resample(B09, bands20.raster$B2_mean, method = "ngb") | ||
|
||
bands20.raster <- addLayer(bands20.raster, B01, B09) | ||
names(bands20.raster)[length(names(bands20.raster))-1] <- "B1_mean" | ||
names(bands20.raster)[length(names(bands20.raster))] <- "B9_mean" | ||
rm(B01) | ||
rm(B09) | ||
gc() | ||
|
||
names(bands20.raster) | ||
|
||
stack.vi <- all_vi(red = bands20.raster$B4_mean, blue = bands20.raster$B2_mean, green = bands20.raster$B3_mean, red_b4 = bands20.raster$B4_mean, red_b5 = bands20.raster$B5_mean, red_b6 = bands20.raster$B6_mean, red_b7 = bands20.raster$B7_mean, nir = bands20.raster$B8_mean, nir_b5 = bands20.raster$B5_mean, nir_b6 = bands20.raster$B6_mean, nir_b7 = bands20.raster$B7_mean, nir_b8 = bands20.raster$B8_mean) | ||
|
||
stack.vi <- addLayer(stack.vi, bands20.raster) | ||
|
||
rm(bands20.raster) | ||
gc() | ||
|
||
if(product == "gpp"){ | ||
output.gpp <- raster::predict(stack.vi, ecofunr:::gpp.rf, na.rm = T, inf.rm = T) | ||
} | ||
else if (product == "gppsat") { | ||
output.gpp <- raster::predict(stack.vi, ecofunr:::gppsat.rf, na.rm = T, inf.rm = T) | ||
} | ||
else if (product == "all") { | ||
output1.gpp <- raster::predict(stack.vi, ecofunr:::gpp.rf, na.rm = T, inf.rm = T) | ||
output2.gpp <- raster::predict(stack.vi, ecofunr:::gppsat.rf, na.rm = T, inf.rm = T) | ||
output.gpp <- stack(output1.gpp, output2.gpp) | ||
} | ||
return(output.gpp) | ||
} |
Binary file not shown.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.