-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrequirements.txt
204 lines (204 loc) · 3.6 KB
/
requirements.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#
# This file is autogenerated by pip-compile with Python 3.10
# by the following command:
#
# pip-compile requirements.in
#
anndata==0.10.8
# via scanpy
array-api-compat==1.8
# via anndata
certifi==2020.6.20
# via requests
chardet==4.0.0
# via requests
contourpy==1.2.1
# via matplotlib
cycler==0.12.1
# via matplotlib
exceptiongroup==1.2.2
# via anndata
filelock==3.13.4
# via
# torch
# triton
fonttools==4.51.0
# via matplotlib
fsspec==2024.3.1
# via torch
h5py==3.11.0
# via
# anndata
# hdf5plugin
# scanpy
hdf5plugin==4.4.0
# via -r requirements.in
idna==2.10
# via requests
jinja2==3.1.3
# via torch
joblib==1.4.2
# via
# pynndescent
# scanpy
# scikit-learn
kiwisolver==1.4.5
# via matplotlib
legacy-api-wrap==1.4
# via scanpy
llvmlite==0.43.0
# via
# numba
# pynndescent
markupsafe==2.0.1
# via jinja2
matplotlib==3.9.0
# via
# -r requirements.in
# scanpy
# seaborn
mpmath==1.3.0
# via sympy
natsort==8.4.0
# via
# anndata
# scanpy
networkx==3.3
# via
# scanpy
# torch
numba==0.60.0
# via
# pynndescent
# scanpy
# umap-learn
numpy==1.26.4
# via
# -r requirements.in
# anndata
# contourpy
# h5py
# matplotlib
# numba
# pandas
# patsy
# scanpy
# scikit-learn
# scipy
# seaborn
# statsmodels
# umap-learn
nvidia-cublas-cu12==12.1.3.1
# via
# nvidia-cudnn-cu12
# nvidia-cusolver-cu12
# torch
nvidia-cuda-cupti-cu12==12.1.105
# via torch
nvidia-cuda-nvrtc-cu12==12.1.105
# via torch
nvidia-cuda-runtime-cu12==12.1.105
# via torch
nvidia-cudnn-cu12==8.9.2.26
# via torch
nvidia-cufft-cu12==11.0.2.54
# via torch
nvidia-curand-cu12==10.3.2.106
# via torch
nvidia-cusolver-cu12==11.4.5.107
# via torch
nvidia-cusparse-cu12==12.1.0.106
# via
# nvidia-cusolver-cu12
# torch
nvidia-nccl-cu12==2.19.3
# via torch
nvidia-nvjitlink-cu12==12.4.127
# via
# nvidia-cusolver-cu12
# nvidia-cusparse-cu12
nvidia-nvtx-cu12==12.1.105
# via torch
packaging==24.0
# via
# anndata
# matplotlib
# scanpy
# statsmodels
pandas==2.2.2
# via
# -r requirements.in
# anndata
# scanpy
# seaborn
# statsmodels
patsy==0.5.6
# via
# scanpy
# statsmodels
pillow==9.0.1
# via matplotlib
pynndescent==0.5.13
# via
# scanpy
# umap-learn
pyparsing==2.4.7
# via matplotlib
python-dateutil==2.9.0.post0
# via
# matplotlib
# pandas
pytz==2022.1
# via pandas
requests==2.25.1
# via -r requirements.in
scanpy==1.10.2
# via -r requirements.in
scikit-learn==1.5.0
# via
# -r requirements.in
# pynndescent
# scanpy
# umap-learn
scipy==1.13.1
# via
# -r requirements.in
# anndata
# pynndescent
# scanpy
# scikit-learn
# statsmodels
# umap-learn
seaborn==0.13.2
# via scanpy
session-info==1.0.0
# via scanpy
six==1.16.0
# via
# patsy
# python-dateutil
statsmodels==0.14.2
# via scanpy
stdlib-list==0.10.0
# via session-info
sympy==1.12
# via torch
threadpoolctl==3.5.0
# via scikit-learn
torch==2.2.2
# via -r requirements.in
tqdm==4.66.4
# via
# -r requirements.in
# scanpy
# umap-learn
triton==2.2.0
# via torch
typing-extensions==4.11.0
# via torch
tzdata==2024.1
# via pandas
umap-learn==0.5.6
# via scanpy
urllib3==1.26.5
# via requests