-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathpre_train.py
74 lines (57 loc) · 2.66 KB
/
pre_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import tensorflow as tf
import argparse
import os
from model.auto_encoder import AutoEncoder
from model.language_model import LanguageModel
from data_utils import build_word_dict, build_word_dataset, batch_iter, download_dbpedia
BATCH_SIZE = 64
NUM_EPOCHS = 10
MAX_DOCUMENT_LEN = 100
def train(train_x, train_y, word_dict, args):
with tf.Session() as sess:
if args.model == "auto_encoder":
model = AutoEncoder(word_dict, MAX_DOCUMENT_LEN)
elif args.model == "language_model":
model = LanguageModel(word_dict, MAX_DOCUMENT_LEN)
else:
raise ValueError("Invalid model: {0}. Use auto_encoder | language_model".format(args.model))
# Define training procedure
global_step = tf.Variable(0, trainable=False)
params = tf.trainable_variables()
gradients = tf.gradients(model.loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(gradients, 5.0)
optimizer = tf.train.AdamOptimizer(0.001)
train_op = optimizer.apply_gradients(zip(clipped_gradients, params), global_step=global_step)
# Summary
loss_summary = tf.summary.scalar("loss", model.loss)
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(args.model, sess.graph)
# Checkpoint
saver = tf.train.Saver(tf.global_variables())
# Initialize all variables
sess.run(tf.global_variables_initializer())
def train_step(batch_x):
feed_dict = {model.x: batch_x}
_, step, summaries, loss = sess.run([train_op, global_step, summary_op, model.loss], feed_dict=feed_dict)
summary_writer.add_summary(summaries, step)
if step % 100 == 0:
print("step {0} : loss = {1}".format(step, loss))
# Training loop
batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS)
for batch_x, _ in batches:
train_step(batch_x)
step = tf.train.global_step(sess, global_step)
if step % 5000 == 0:
saver.save(sess, os.path.join(args.model, "model", "model.ckpt"), global_step=step)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="auto_encoder", help="auto_encoder | language_model")
args = parser.parse_args()
if not os.path.exists("dbpedia_csv"):
print("Downloading dbpedia dataset...")
download_dbpedia()
print("\nBuilding dictionary..")
word_dict = build_word_dict()
print("Preprocessing dataset..")
train_x, train_y = build_word_dataset("train", word_dict, MAX_DOCUMENT_LEN)
train(train_x, train_y, word_dict, args)