-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
231 lines (186 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from __future__ import print_function, division
import os
import gc
import time
import argparse
import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.optim as optim
import torch.backends.cudnn as cudnn
import models
import torch.nn.functional as F
from skimage import io
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from datasets import __datasets__
from utils import *
import cv2
cudnn.benchmark = True
parser = argparse.ArgumentParser(description='DispNetS')
parser.add_argument('--maxdisp', type=int, default=192, help='maximum disparity')
parser.add_argument('--dataset', required=True, help='dataset name', choices=__datasets__.keys())
parser.add_argument('--datapath', required=True, help='data path')
parser.add_argument('--trainlist', required=True, help='training list')
parser.add_argument('--testlist', required=True, help='testing list')
parser.add_argument('--lr', type=float, default=0.001, help='base learning rate')
parser.add_argument('--lrepochs', type=str, required=True, help='the epochs to decay lr: the downscale rate')
parser.add_argument('--batch_size', type=int, default=4, help='training batch size')
parser.add_argument('--test_batch_size', type=int, default=4, help='testing batch size')
parser.add_argument('--epochs', type=int, required=True, help='number of epochs to train')
parser.add_argument('--logdir', required=True, help='the directory to save logs and checkpoints')
parser.add_argument('--loadckpt', help='load the weights from a specific checkpoint')
parser.add_argument('--resume', action='store_true', help='continue training the model')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--summary_freq', type=int, default=200, help='the frequency of saving summary')
parser.add_argument('--save_freq', type=int, default=1, help='the frequency of saving checkpoint')
# parse arguments, set seeds
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
os.makedirs(args.logdir, exist_ok=True)
# create summary logger
logger = SummaryWriter(args.logdir)
# dataset, dataloader
StereoDataset = __datasets__[args.dataset]
train_dataset = StereoDataset(args.datapath, args.trainlist, True)
test_dataset = StereoDataset(args.datapath, args.testlist, False)
TrainImgLoader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=8, drop_last=True)
TestImgLoader = DataLoader(test_dataset, args.test_batch_size, shuffle=False, num_workers=4, drop_last=False)
# model, optimizer
#dispNet = models.DispNetS(alpha=191, beta=0.0)
dispNet = models.DispNetS()
dispNet = nn.DataParallel(dispNet)
dispNet.cuda()
optimizer = optim.Adam(dispNet.parameters(), lr=args.lr, betas=(0.9, 0.999))
# load parameters
start_epoch = 0
if args.resume:
## find all checkpoints file and sort according to epoch id
#all_saved_ckpts = [fn for fn in os.listdir(args.logdir) if fn.endswith(".ckpt")]
#all_saved_ckpts = sorted(all_saved_ckpts, key=lambda x: int(x.split('_')[-1].split('.')[0]))
## use the latest checkpoint file
#loadckpt = os.path.join(args.logdir, all_saved_ckpts[-1])
#print("Loading the latest model in logdir: {}".format(loadckpt))
print("Loading the latest model in logdir: {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
dispNet.load_state_dict(state_dict['state_dict'])
optimizer.load_state_dict(state_dict['optimizer'])
start_epoch = state_dict['epoch'] + 1
elif args.loadckpt:
# load the checkpoint file specified by args.loadckpt
print("Loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
dispNet.load_state_dict(state_dict['state_dict'], strict=True)
print("Start at epoch {}".format(start_epoch))
def train():
best_checkpoint_loss = 100
for epoch_idx in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch_idx, args.lr, args.lrepochs)
# training
for batch_idx, sample in enumerate(TrainImgLoader):
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
start_time = time.time()
do_summary = global_step % args.summary_freq == 0
loss, scalar_outputs, image_outputs = train_sample(sample, compute_metrics=do_summary)
if do_summary:
save_scalars(logger, 'train', scalar_outputs, global_step)
save_images(logger, 'train', image_outputs, global_step)
del scalar_outputs, image_outputs
if batch_idx % 100 == 0:
print('Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}'.format(epoch_idx, args.epochs,
batch_idx,
len(TrainImgLoader), loss,
time.time() - start_time))
# saving checkpoints
if (epoch_idx + 1) % args.save_freq == 0:
checkpoint_data = {'epoch': epoch_idx, 'state_dict': dispNet.state_dict(), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint_data, "{}/checkpoint_{:0>6}.ckpt".format(args.logdir, epoch_idx))
gc.collect()
# testing
avg_test_scalars = AverageMeterDict()
for batch_idx, sample in enumerate(TestImgLoader):
global_step = len(TestImgLoader) * epoch_idx + batch_idx
start_time = time.time()
do_summary = global_step % args.summary_freq == 0
loss, scalar_outputs, image_outputs = test_sample(sample, compute_metrics=do_summary)
if do_summary:
save_scalars(logger, 'test', scalar_outputs, global_step)
save_images(logger, 'test', image_outputs, global_step)
avg_test_scalars.update(scalar_outputs)
del scalar_outputs, image_outputs
if batch_idx % 4 == 0:
print('Epoch {}/{}, Iter {}/{}, test loss = {:.3f}, time = {:3f}'.format(epoch_idx, args.epochs,
batch_idx,
len(TestImgLoader), loss,
time.time() - start_time))
avg_test_scalars = avg_test_scalars.mean()
save_scalars(logger, 'fulltest', avg_test_scalars, len(TrainImgLoader) * (epoch_idx + 1))
print("avg_test_scalars", avg_test_scalars)
# saving new best checkpoint
if avg_test_scalars['loss'] < best_checkpoint_loss:
best_checkpoint_loss = avg_test_scalars['loss']
print("Overwriting best checkpoint")
checkpoint_data = {'epoch': epoch_idx, 'state_dict': dispNet.state_dict(), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint_data, "{}/best.ckpt".format(args.logdir))
gc.collect()
# train one sample
def train_sample(sample, compute_metrics=False):
dispNet.train()
imgL, imgR, disp_gt = sample['left'], sample['right'], sample['disparity']
imgL = imgL.cuda()
imgR = imgR.cuda()
disp_gt = disp_gt.cuda()
optimizer.zero_grad()
disp_ests = dispNet(imgL, imgR)
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
disp_ests[0] = torch.squeeze(disp_ests[0], 1)
for i in range(1, 4):
disp_ests[i] = F.interpolate(disp_ests[i], scale_factor=2**i, mode='bilinear')
disp_ests[i] = torch.squeeze(disp_ests[i], 1)
loss = model_loss(disp_ests, disp_gt, mask)
scalar_outputs = {"loss": loss}
image_outputs = {"disp_est": disp_ests, "disp_gt": disp_gt, "imgL": imgL, "imgR": imgR}
if compute_metrics:
with torch.no_grad():
image_outputs["errormap"] = [disp_error_image_func(disp_est, disp_gt) for disp_est in disp_ests]
scalar_outputs["EPE"] = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["D1"] = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["Thres1"] = [Thres_metric(disp_est, disp_gt, mask, 1.0) for disp_est in disp_ests]
scalar_outputs["Thres2"] = [Thres_metric(disp_est, disp_gt, mask, 2.0) for disp_est in disp_ests]
scalar_outputs["Thres3"] = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
loss.backward()
optimizer.step()
#for param in dispNet.parameters():
# print(param.grad)
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
# test one sample
@make_nograd_func
def test_sample(sample, compute_metrics=True):
dispNet.eval()
imgL, imgR, disp_gt = sample['left'], sample['right'], sample['disparity']
imgL = imgL.cuda()
imgR = imgR.cuda()
disp_gt = disp_gt.cuda()
disp_ests = dispNet(imgL, imgR)
disp_ests[0] = torch.squeeze(disp_ests[0], 1)
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
loss = model_loss(disp_ests, disp_gt, mask)
scalar_outputs = {"loss": loss}
image_outputs = {"disp_est": disp_ests, "disp_gt": disp_gt, "imgL": imgL, "imgR": imgR}
scalar_outputs["D1"] = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["EPE"] = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["Thres1"] = [Thres_metric(disp_est, disp_gt, mask, 1.0) for disp_est in disp_ests]
scalar_outputs["Thres2"] = [Thres_metric(disp_est, disp_gt, mask, 2.0) for disp_est in disp_ests]
scalar_outputs["Thres3"] = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
if compute_metrics:
image_outputs["errormap"] = [disp_error_image_func(disp_est, disp_gt) for disp_est in disp_ests]
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
def model_loss(disp_ests, disp_gt, mask):
weights = [1, 0.5, 0.25, 0.125]
all_losses = []
for disp_est, weight in zip(disp_ests, weights):
all_losses.append(weight * F.smooth_l1_loss(disp_est[mask], disp_gt[mask], reduction='mean'))
return sum(all_losses)
if __name__ == '__main__':
train()