-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecoder.py
94 lines (80 loc) · 3.84 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import attr
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from functools import partial
from dall_e.utils import Conv2d
@attr.s(eq=False, repr=False)
class DecoderBlock(nn.Module):
n_in: int = attr.ib(validator=lambda i, a, x: x >= 1)
n_out: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 4 ==0)
n_layers: int = attr.ib(validator=lambda i, a, x: x >= 1)
device: torch.device = attr.ib(default=None)
requires_grad: bool = attr.ib(default=False)
def __attrs_post_init__(self) -> None:
super().__init__()
self.n_hid = self.n_out // 4
self.post_gain = 1 / (self.n_layers ** 2)
make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad)
self.id_path = make_conv(self.n_in, self.n_out, 1) if self.n_in != self.n_out else nn.Identity()
self.res_path = nn.Sequential(OrderedDict([
('relu_1', nn.ReLU()),
('conv_1', make_conv(self.n_in, self.n_hid, 1)),
('relu_2', nn.ReLU()),
('conv_2', make_conv(self.n_hid, self.n_hid, 3)),
('relu_3', nn.ReLU()),
('conv_3', make_conv(self.n_hid, self.n_hid, 3)),
('relu_4', nn.ReLU()),
('conv_4', make_conv(self.n_hid, self.n_out, 3)),]))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.id_path(x) + self.post_gain * self.res_path(x)
@attr.s(eq=False, repr=False)
class Decoder(nn.Module):
group_count: int = 4
n_init: int = attr.ib(default=128, validator=lambda i, a, x: x >= 8)
n_hid: int = attr.ib(default=256, validator=lambda i, a, x: x >= 64)
n_blk_per_group: int = attr.ib(default=2, validator=lambda i, a, x: x >= 1)
output_channels: int = attr.ib(default=3, validator=lambda i, a, x: x >= 1)
vocab_size: int = attr.ib(default=8192, validator=lambda i, a, x: x >= 512)
device: torch.device = attr.ib(default=torch.device('cpu'))
requires_grad: bool = attr.ib(default=False)
use_mixed_precision: bool = attr.ib(default=True)
def __attrs_post_init__(self) -> None:
super().__init__()
blk_range = range(self.n_blk_per_group)
n_layers = self.group_count * self.n_blk_per_group
make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad)
make_blk = partial(DecoderBlock, n_layers=n_layers, device=self.device,
requires_grad=self.requires_grad)
self.blocks = nn.Sequential(OrderedDict([
('input', make_conv(self.vocab_size, self.n_init, 1, use_float16=False)),
('group_1', nn.Sequential(OrderedDict([
*[(f'block_{i + 1}', make_blk(self.n_init if i == 0 else 8 * self.n_hid, 8 * self.n_hid)) for i in blk_range],
('upsample', nn.Upsample(scale_factor=2, mode='nearest')),
]))),
('group_2', nn.Sequential(OrderedDict([
*[(f'block_{i + 1}', make_blk(8 * self.n_hid if i == 0 else 4 * self.n_hid, 4 * self.n_hid)) for i in blk_range],
('upsample', nn.Upsample(scale_factor=2, mode='nearest')),
]))),
('group_3', nn.Sequential(OrderedDict([
*[(f'block_{i + 1}', make_blk(4 * self.n_hid if i == 0 else 2 * self.n_hid, 2 * self.n_hid)) for i in blk_range],
('upsample', nn.Upsample(scale_factor=2, mode='nearest')),
]))),
('group_4', nn.Sequential(OrderedDict([
*[(f'block_{i + 1}', make_blk(2 * self.n_hid if i == 0 else 1 * self.n_hid, 1 * self.n_hid)) for i in blk_range],
]))),
('output', nn.Sequential(OrderedDict([
('relu', nn.ReLU()),
('conv', make_conv(1 * self.n_hid, 2 * self.output_channels, 1)),
]))),
]))
def forward(self, x: torch.Tensor) -> torch.Tensor:
if len(x.shape) != 4:
raise ValueError(f'input shape {x.shape} is not 4d')
if x.shape[1] != self.vocab_size:
raise ValueError(f'input has {x.shape[1]} channels but model built for {self.vocab_size}')
if x.dtype != torch.float32:
raise ValueError('input must have dtype torch.float32')
return self.blocks(x)