From f635e2a11eb4d74618594fc99aadbc3b3d3f4111 Mon Sep 17 00:00:00 2001 From: "Hongzhi (Steve), Chen" Date: Tue, 2 May 2023 01:28:52 +0800 Subject: [PATCH] Polish Tutorial (#5645) --- notebooks/sparse/quickstart.ipynb | 17 +++++------------ 1 file changed, 5 insertions(+), 12 deletions(-) diff --git a/notebooks/sparse/quickstart.ipynb b/notebooks/sparse/quickstart.ipynb index f061b0d6bfca..c9bf47cded6d 100644 --- a/notebooks/sparse/quickstart.ipynb +++ b/notebooks/sparse/quickstart.ipynb @@ -1208,15 +1208,8 @@ { "cell_type": "markdown", "source": [ - "## Exercise" - ], - "metadata": { - "id": "1iBNlJVYz3zi" - } - }, - { - "cell_type": "markdown", - "source": [ + "## Exercise \\#1\n", + "\n", "*Let's test what you've learned. Feel free to [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/sparse/quickstart.ipynb).*\n", "\n", "Given a sparse symmetrical adjacency matrix $A$, calculate its symmetrically normalized adjacency matrix: $$norm = \\bar{D}^{-\\frac{1}{2}}\\bar{A}\\bar{D}^{-\\frac{1}{2}}$$\n", @@ -1224,7 +1217,7 @@ "Where $\\bar{A} = A + I$, $I$ is the identity matrix, and $\\bar{D}$ is the diagonal node degree matrix of $\\bar{A}$." ], "metadata": { - "id": "yDQ4Kmr_08St" + "id": "1iBNlJVYz3zi" } }, { @@ -1254,7 +1247,7 @@ { "cell_type": "markdown", "source": [ - "## Exercise\n", + "## Exercise \\#2\n", "\n", "Let's implement a simplified version of the Graph Attention Network (GAT) layer.\n", "\n", @@ -1324,4 +1317,4 @@ "outputs": [] } ] -} +} \ No newline at end of file