diff --git a/analysis/check_bfb.ipynb b/analysis/check_bfb.ipynb new file mode 100644 index 0000000..54b13a9 --- /dev/null +++ b/analysis/check_bfb.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "1a318faf-f427-47da-889f-d577fea42163", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "import glob\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "import cftime\n", + "import dask\n", + "from dask_jobqueue import PBSCluster\n", + "from dask.distributed import Client\n", + "import statsmodels.api as sm" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "7187399b-ea09-40d5-b5ea-2df757ac1c37", + "metadata": {}, + "outputs": [], + "source": [ + "def get_ensemble(files,data_vars,p=True):\n", + "\n", + " def preprocess(ds):\n", + " return ds[data_vars]\n", + "\n", + " #read in the dataset\n", + " ds = xr.open_mfdataset(files,combine='nested',concat_dim='ens',\n", + " parallel=p,preprocess=preprocess)\n", + "\n", + " #fix up time dimension\n", + " htape='h0'\n", + " #if htape=='h0' or htape=='h1':\n", + " # ds['time'] = xr.cftime_range(str(2005),periods=len(ds.time),freq='MS') #fix time bug\n", + "\n", + " #specify extra variables \n", + " if htape=='h0':\n", + " extras = ['grid1d_lat','grid1d_lon']\n", + " elif htape=='h1':\n", + " extras = ['pfts1d_lat','pfts1d_lon','pfts1d_wtgcell','pfts1d_itype_veg']\n", + " \n", + " #add in some extra variables\n", + " ds0 = xr.open_dataset(files[0])\n", + " for extra in extras:\n", + " ds[extra]=ds0[extra]\n", + "\n", + " return ds" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "53f265a9-c0a4-4052-a9d9-280261af0449", + "metadata": {}, + "outputs": [], + "source": [ + "# Setup your PBSCluster\n", + "ncores=1\n", + "nmem='25GB'\n", + "cluster = PBSCluster(\n", + " cores=ncores, # The number of cores you want\n", + " memory=nmem, # Amount of memory\n", + " processes=1, # How many processes\n", + " queue='casper', # The type of queue to utilize (/glade/u/apps/dav/opt/usr/bin/execcasper)\n", + " local_directory='$TMPDIR', # Use your local directory\n", + " resource_spec='select=1:ncpus='+str(ncores)+':mem='+nmem, # Specify resources\n", + " project='P93300641', # Input your project ID here\n", + " walltime='03:00:00', # Amount of wall time\n", + " interface='ib0', # Interface to use\n", + ")\n", + "\n", + "# Scale up\n", + "cluster.scale(20)\n", + "\n", + "# Setup your client\n", + "client = Client(cluster)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f3be8bac-5847-4e99-a0db-f4f12d3c066a", + "metadata": {}, + "outputs": [], + "source": [ + "#fetch the paraminfo\n", + "csv = '/glade/scratch/djk2120/PPEn11/SP_bfb_test.csv' \n", + "paramkey = pd.read_csv(csv)\n", + "\n", + "#fetch the sparsegrid landarea\n", + "la_file = '/glade/scratch/djk2120/PPEn08/sparsegrid_landarea.nc'\n", + "la = xr.open_dataset(la_file).landarea #km2" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "02baf223-a08c-4cba-906a-330571789134", + "metadata": {}, + "outputs": [], + "source": [ + "kdir = '/glade/scratch/oleson/'\n", + "keys = []; params = []\n", + "files = []\n", + "for key,param in zip(paramkey.key,paramkey.param):\n", + " thisdir = kdir+'PPEn11_CTL2010SP_'+key+'/run/'\n", + " rfile = glob.glob(thisdir+'*.clm2.r.*.nc')\n", + " if len(rfile)>0:\n", + " keys.append(key)\n", + " params.append(param)\n", + " h0 = glob.glob(thisdir+'*.clm2.h0.*.nc')\n", + " files.append(h0[0])\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "82e3b26a-f2ad-4bb1-bbd9-8f1511c151dc", + "metadata": {}, + "outputs": [], + "source": [ + "datavars = ['FPSN','EFLX_LH_TOT','FSA','TV','TSOI_10CM','SOILWATER_10CM']\n", + "ds =get_ensemble(files,datavars)" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "cbfaf107-9924-45a5-b77c-abd25122bc95", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FPSN 75\n", + "EFLX_LH_TOT 75\n", + "FSA 75\n", + "TV 75\n", + "TSOI_10CM 75\n", + "SOILWATER_10CM 75\n" + ] + } + ], + "source": [ + "nens = len(ds.ens)\n", + "bfb_all = np.zeros(nens)+1\n", + "for f in datavars:\n", + "\n", + " x0 = ds[v].sel(ens=0)\n", + " isnan = np.tile(np.isnan(x0),[nens,1,1])\n", + " bfb_grid = (ds[v]==x0).values\n", + " bfb_grid[isnan]=1 #ignore nans\n", + " bfb = bfb_grid.sum(axis=(1,2))==24*400 #all gridcells / all times must be BFB\n", + " print(f,bfb.sum())\n", + " \n", + " bfb_all = bfb_all*bfb" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "fd01fa9a-2a9b-4950-b785-c8591f13638b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['default', 'grperc', 'br_mr', 'lmr_intercept_atkin',\n", + " 'FUN_fracfixers', 'fun_cn_flex_a', 'fun_cn_flex_b',\n", + " 'fun_cn_flex_c', 'kc_nonmyc', 'kn_nonmyc', 'akc_active',\n", + " 'akn_active', 'ekc_active', 'ekn_active', 'stem_leaf',\n", + " 'croot_stem', 'flivewd', 'frootcn', 'leaf_long', 'lwtop_ann',\n", + " 'ndays_off', 'ndays_on', 'tau_cwd', 'tau_l1', 'tau_l2_l3',\n", + " 'tau_s1', 'tau_s2', 'tau_s3', 'q10_mr', 'minpsi_hr', 'maxpsi_hr',\n", + " 'rf_l1s1_bgc', 'rf_l2s1_bgc', 'rf_l3s2_bgc', 'rf_s2s1_bgc',\n", + " 'rf_s2s3_bgc', 'rf_s3s1_bgc', 'cn_s3_bgc', 'decomp_depth_efolding',\n", + " 'max_altdepth_cryoturbation', 'max_altmultiplier_cryoturb',\n", + " 'cryoturb_diffusion_k', 'som_diffus', 'k_nitr_max_perday',\n", + " 'denitrif_respiration_coefficient',\n", + " 'denitrif_respiration_exponent',\n", + " 'denitrif_nitrateconc_coefficient',\n", + " 'denitrif_nitrateconc_exponent', 'r_mort', 'fsr_pft', 'fd_pft',\n", + " 'prh30', 'ignition_efficiency', 'cc_dstem', 'cc_leaf', 'cc_lstem',\n", + " 'cc_other', 'fm_droot', 'fm_leaf', 'fm_lroot', 'fm_lstem',\n", + " 'fm_other', 'fm_root', 'KCN', 'LF', 'FR', 'Q10', 'CWD',\n", + " 'perched_baseflow_scalar', 'xdrdt', 'frootcn_max', 'frootcn_min',\n", + " 'leafcn_max', 'leafcn_min', 'fm_dstem'], dtype='