-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
131 lines (98 loc) · 4.25 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
'''
LSTM based encoder-decoder model
Author: Divyansh Khanna
'''
import os
import torch
import pickle
import argparse
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
torch.manual_seed(1)
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--epoch_step', type=int, default=10)
parser.add_argument('--hidden_dim', type=int, default=32)
parser.add_argument('--rollout_size', type=int, default=200)
parser.add_argument('--obs_shape', type=int, required=True)
parser.add_argument('--actions_shape', type=int, required=True)
parser.add_argument('--save_model', type=bool, required=True, default=True)
args = parser.parse_args()
with open('rollouts/'+args.env+'.pkl', 'rb') as f:
rollouts = pickle.load(f)
NUM_OF_INPUTS = len(rollouts)
ROLLOUT_SIZE = min(args.rollout_size, len(rollouts[0]['observations']))
INPUT_SPACE_DIM = args.obs_shape #env.observation_space.shape[0]
ACTION_SPACE_DIM = args.actions_shape#env.action_space.shape[0]
HIDDEN_DIM = args.hidden_dim
print("Number of rollouts are {}".format(NUM_OF_INPUTS))
print("Size of rollouts are {}".format(ROLLOUT_SIZE))
print("Input space dim is {}".format(INPUT_SPACE_DIM))
print("Action space dim is {}".format(ACTION_SPACE_DIM))
print("Hidden dim is {}".format(HIDDEN_DIM))
isCuda = True if torch.cuda.is_available() else False
#isCuda = False
print(isCuda)
class LSTMEncoder(nn.Module):
def __init__(self, input_dim, hidden_dim, numOfActions, rollout_dim):
super(LSTMEncoder, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.rollout_dim = rollout_dim
self.lstm = nn.LSTM(input_dim, hidden_dim)
self.hiddenToAction = nn.Linear(hidden_dim, numOfActions)
self.init_hidden()
def init_hidden(self,x=None):
if x==None:
self.hidden = (Variable(torch.zeros(1, 1, self.hidden_dim).cuda()),
Variable(torch.zeros(1, 1, self.hidden_dim).cuda()))
else:
self.hidden = (Variable(x[0].data.cuda()), Variable(x[1].data.cuda()))
def forward(self, sequence):
lstm_out, self.hidden = self.lstm(sequence.view(self.rollout_dim, 1, -1), self.hidden)
action_scores = self.hiddenToAction(lstm_out.view(self.rollout_dim, -1))
self.init_hidden(self.hidden)
return action_scores, self.hidden
model = LSTMEncoder(INPUT_SPACE_DIM, HIDDEN_DIM, ACTION_SPACE_DIM, ROLLOUT_SIZE)
if isCuda:
model.cuda()
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
# set up the training
lossPerEpoch = []
for e in range(1, args.epochs+1):
losses = []
for rollout in rollouts:
model.zero_grad()
if len(rollout['observations']) < ROLLOUT_SIZE:
continue
data = torch.from_numpy(rollout['observations']).float().view(ROLLOUT_SIZE, 1, -1)
target = torch.from_numpy(rollout['actions']).float().view(ROLLOUT_SIZE, -1)
if isCuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
# model.hidden = model.init_hidden()
scores, _ = model(data)
loss = loss_fn(scores, target)
loss.backward()
optimizer.step()
losses.append(loss)
lossPerEpoch.append(sum(losses)/len(losses))
if e%args.epoch_step == 0:
print('Train Epoch: {}/{}\t Loss: {:.5f}'.format(e, args.epochs, loss))
if args.save_model:
filename = 'LSTMmodels/{}/inputs{}rolloutsize{}epochs{}.pkl'.format(args.env, NUM_OF_INPUTS, ROLLOUT_SIZE, args.epochs)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
with open(filename, 'wb') as f:
torch.save(model.state_dict(), f)
print('Model written to file '+filename)
filename = 'LSTMmodels/Loss/{}/inputs{}rolloutsize{}epochs{}.pkl'.format(args.env, NUM_OF_INPUTS, ROLLOUT_SIZE, args.epochs)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
with open(filename, 'wb') as f:
torch.save(lossPerEpoch, f) # save the decoder for generating rollouts
print('Loss written to file '+filename)