-
Notifications
You must be signed in to change notification settings - Fork 3
/
yolo_opencv.py
109 lines (95 loc) · 3.48 KB
/
yolo_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
import argparse
import numpy as np
import xlrd
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--image', required=True,help = 'path to input image')
ap.add_argument('-c', '--config', required=True,help = 'path to yolo config file')
ap.add_argument('-w', '--weights', required=True,help = 'path to yolo pre-trained weights')
ap.add_argument('-cl', '--classes', required=True,help = 'path to text file containing class names')
args = ap.parse_args()
results=[]
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = str(classes[class_id])
results.append(label)
color = COLORS[class_id]
cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), color, 2)
cv2.putText(img, label, (x-10,y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
curw=int(input("Enter your current weight"))
tarw=int(input("Enter your target weight"))
days=int(input("Enter the number of days in which you want to achieve the target weight"))
image = cv2.imread(args.image)
Width = image.shape[1]
Height = image.shape[0]
scale = 0.00392
classes = None
with open(args.classes, 'r') as f:
classes = [line.strip() for line in f.readlines()]
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
net = cv2.dnn.readNet(args.weights, args.config)
blob = cv2.dnn.blobFromImage(image, scale, (416,416), (0,0,0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_prediction(image, class_ids[i], confidences[i], round(x), round(y), round(x+w), round(y+h))
loc='C:\\Users\\HP\\Documents\\GitHub\\DrFoodie\\food calories.xlsx'
#location of the file containing values of calories of different food items
wb = xlrd.open_workbook(loc)
sheet = wb.sheet_by_index(0)
dictionary = {
"default": 0
}
for i in range(sheet.nrows):
dictionary[sheet.cell_value(i, 0)]=sheet.cell_value(i,1)
totalcal=0
for i in range(0,len(results)):
ter=str(results[i])
ter2=str(dictionary[results[i]])
print("100 gram servings of "+ter+" has "+ter2+" calories.")
totalcal=totalcal+dictionary[results[i]]
ppp=str(totalcal)
print("total calories of your meal is "+ppp)
calt=(tarw-curw)*1000
calt=calt/days
if calt<=0:
calt=calt*-1
ter=str(calt)
print("You should consume "+ter+" calories lesser everyday to get to your desired weight")
else:
ter=str(calt)
print("You should consume almost "+ter+" calories everyday to get to your desired weight")
cv2.imshow("object detection", image)
cv2.waitKey()
cv2.imwrite("object-detection.jpg", image)
cv2.destroyAllWindows()