-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen.sh
executable file
·2251 lines (1693 loc) · 64.3 KB
/
gen.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/bin/bash
# gen.sh (Main Setup and Deployment Script)
set -euo pipefail
IFS=$'\n\t'
# Function to create directories
create_dir() {
if [ ! -d "$1" ]; then
mkdir -p "$1"
echo "Created directory: $1"
else
echo "Directory already exists: $1"
fi
}
# Function to create files with content
create_file() {
local filepath=$1
local content=$2
create_dir "$(dirname "$filepath")"
if [ ! -f "$filepath" ]; then
echo -e "$content" > "$filepath"
echo "Created file: $filepath"
else
echo "File already exists: $filepath"
fi
}
# 1. Root Files
create_file "README.md" "# AI Platform
A comprehensive AI platform encompassing various domains such as chatbots, predictive analytics, personalization, cybersecurity, content creation, healthcare, AI consulting, VR/AR, supply chain optimization, AutoML, and more.
## Features
- **AI Chatbot:** Natural language interactions powered by GPT-4.
- **Predictive Analytics:** Risk assessment, customer behavior prediction, and time series forecasting.
- - **Personalization Engine:** Real-time and hybrid recommendation systems.
- **Cybersecurity AI:** Threat intelligence, incident response, and anomaly detection.
- **Content Creation AI:** Generate text, images, and multimedia content.
- **Healthcare AI:** Drug discovery and medical image diagnostics.
- **AI Consulting:** Strategy development using data analysis.
- **VR/AR AI:** Enhance VR/AR experiences with AI-powered features.
- **Supply Chain AI:** Optimize demand prediction, inventory management, and logistics.
- **AutoML:** Hyperparameter tuning and model selection with Optuna.
- **C++ and Rust Anomaly Detectors:** High-performance anomaly detection using C++ and Rust.
## Getting Started
Follow the [Installation Guide](docs/user_manual/installation_guide.md) to set up the project.
## Documentation
Comprehensive documentation is available in the \`docs\` directory, including API references, development guides, and user manuals.
## Contributing
Contributions are welcome! Please read the [Coding Standards](docs/dev_guide/coding_standards.md) and follow the pull request process.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
"
create_file "LICENSE" "MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
[Full MIT License Text should be inserted here.]"
create_file ".gitignore" "# Python
__pycache__/
*.pyc
*.pyo
*.pyd
env/
venv/
ENV/
env.bak/
venv.bak/
# Go
/bin/
pkg/
*.test
# Rust
/target/
Cargo.lock
# C++
/build/
*.o
*.obj
*.exe
*.out
# Docker
*.log
.docker/
# Kubernetes
*.yaml
# OS Files
.DS_Store
Thumbs.db
# IDEs
.idea/
*.sublime-project
*.sublime-workspace
# Test artifacts
*.cover
coverage.xml
# Logs
*.log
logs/
# Virtual Environment
.venv/
"
create_file "Makefile" ".PHONY: all build test deploy clean
all: build test deploy
build:
bash scripts/build.sh
test:
bash scripts/test_runner.sh
deploy:
bash scripts/deploy.sh
clean:
rm -rf build
docker system prune -f
"
create_file "gen.sh" "#!/bin/bash
# gen.sh (Main Setup and Deployment Script)
set -euo pipefail
IFS=$'\n\t'
# Define the project root, defaulting to the current directory if not provided
PROJECT_ROOT=\"\${1:-\$(pwd)}\"
echo \"Starting AI Platform setup and deployment...\"
# Execute the setup and build scripts
bash \"\$PROJECT_ROOT/scripts/setup_env.sh\"
bash \"\$PROJECT_ROOT/scripts/install_dependencies.sh\"
bash \"\$PROJECT_ROOT/scripts/test_runner.sh\"
bash \"\$PROJECT_ROOT/scripts/deploy.sh\"
echo \"AI Platform setup and deployment completed successfully.\"
"
chmod +x gen.sh
# 2. Source Code Directory
create_dir "src"
# 2.1 AI Chatbot Module
create_dir "src/ai_chatbot"
create_file "src/ai_chatbot/chatbot.py" "from flask import Flask, request, jsonify
import logging
import logging.config
app = Flask(__name__)
# Configure logging
logging.config.fileConfig('../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('ai_chatbot.chatbot')
@app.route('/chat', methods=['POST'])
def chat():
data = request.get_json()
message = data.get('message', '')
logger.info(f\"Received message: {message}\")
response = generate_response(message)
logger.info(f\"Sending response: {response}\")
return jsonify({'response': response})
@app.route('/healthz', methods=['GET'])
def healthz():
return \"OK\", 200
@app.route('/readyz', methods=['GET'])
def readyz():
# Implement readiness logic here
return \"Ready\", 200
def generate_response(message):
# Placeholder for GPT-4 integration
return f\"Echo: {message}\"
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)
"
create_file "src/ai_chatbot/requirements.txt" "Flask==2.3.2
requests==2.31.0
"
# 2.2 Predictive Analytics Module
create_dir "src/predictive_analytics/data_processing"
create_file "src/predictive_analytics/data_processing/data_processor.py" "import pandas as pd
import numpy as np
class DataProcessor:
def __init__(self):
pass
def clean_data(self, df: pd.DataFrame) -> pd.DataFrame:
# Implement data cleaning logic
df = df.dropna()
return df
"
create_file "src/predictive_analytics/data_processing/requirements.txt" "pandas==1.5.3
numpy==1.23.5
"
create_dir "src/predictive_analytics/risk_assessment"
create_file "src/predictive_analytics/risk_assessment/catboost_risk_model.py" "from catboost import CatBoostClassifier
import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('predictive_analytics.risk_assessment')
class RiskAssessmentModel:
def __init__(self):
self.model = CatBoostClassifier()
def train(self, X, y):
logger.info(\"Training CatBoost Risk Assessment Model...\")
self.model.fit(X, y)
logger.info(\"Model training completed.\")
def predict(self, X):
logger.info(\"Predicting risk scores...\")
return self.model.predict_proba(X)[:, 1].tolist()
"
create_dir "src/predictive_analytics/customer_behavior_prediction"
create_file "src/predictive_analytics/customer_behavior_prediction/xgboost_behavior_model.py" "import xgboost as xgb
import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('predictive_analytics.customer_behavior_prediction')
class BehaviorPredictionModel:
def __init__(self):
self.model = xgb.XGBClassifier()
def train(self, X, y):
logger.info(\"Training XGBoost Customer Behavior Prediction Model...\")
self.model.fit(X, y)
logger.info(\"Model training completed.\")
def predict(self, X):
logger.info(\"Predicting customer behavior...\")
return self.model.predict(X).tolist()
"
create_dir "src/predictive_analytics/time_series_forecasting"
create_file "src/predictive_analytics/time_series_forecasting/prophet_forecasting_model.py" "from fbprophet import Prophet
import pandas as pd
import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('predictive_analytics.time_series_forecasting')
class TimeSeriesForecastingModel:
def __init__(self):
self.model = Prophet()
def train(self, df: pd.DataFrame):
logger.info(\"Training Prophet Time Series Forecasting Model...\")
self.model.fit(df)
logger.info(\"Model training completed.\")
def predict(self, periods: int):
future = self.model.make_future_dataframe(periods=periods)
forecast = self.model.predict(future)
return forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(periods).to_dict(orient='records')
"
# 2.3 Personalization Engine Module
create_dir "src/personalization_engine/real_time_personalization/go_service"
create_file "src/personalization_engine/real_time_personalization/go_service/main.go" "package main
import (
"fmt"
"log"
"net/http"
)
func recommendHandler(w http.ResponseWriter, r *http.Request) {
// Placeholder for recommendation logic
fmt.Fprintf(w, \"Recommendations: [301, 302, 303]\")
}
func main() {
http.HandleFunc(\"/recommend\", recommendHandler)
log.Println(\"Go Recommender Service is running on port 8001...\")
log.Fatal(http.ListenAndServe(\":8001\", nil))
}
"
create_file "src/personalization_engine/real_time_personalization/go_service/go.mod" "module go_recommender_service
go 1.20
"
create_file "src/personalization_engine/real_time_personalization/go_service/go.sum" "" # Assuming no dependencies
create_dir "src/personalization_engine/real_time_personalization"
create_file "src/personalization_engine/real_time_personalization/real_time_recommender.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('personalization_engine.real_time_personalization')
class RealTimeRecommender:
def __init__(self):
pass
def get_recommendations(self, user_id: int, item_id: int) -> list:
logger.info(f\"Generating recommendations for User {user_id} and Item {item_id}\")
# Placeholder for recommendation logic
return [301, 302, 303]
"
create_dir "src/personalization_engine/recommender"
create_file "src/personalization_engine/recommender/hybrid_recommender.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('personalization_engine.recommender.hybrid_recommender')
class HybridRecommender:
def __init__(self):
pass
def recommend(self, user_id: int, item_id: int) -> list:
logger.info(f\"Hybrid recommending for User {user_id} and Item {item_id}\")
# Placeholder for hybrid recommendation logic
return [301, 302, 303]
"
create_file "src/personalization_engine/recommender/content_based_filtering.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('personalization_engine.recommender.content_based_filtering')
class ContentBasedFiltering:
def __init__(self):
pass
def recommend(self, user_id: int, item_id: int) -> list:
logger.info(f\"Content-Based recommending for User {user_id} and Item {item_id}\")
# Placeholder for content-based filtering logic
return [301, 302, 303]
"
create_file "src/personalization_engine/recommender/collaborative_filtering.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('personalization_engine.recommender.collaborative_filtering')
class CollaborativeFiltering:
def __init__(self):
pass
def recommend(self, user_id: int, item_id: int) -> list:
logger.info(f\"Collaborative Filtering recommending for User {user_id} and Item {item_id}\")
# Placeholder for collaborative filtering logic
return [301, 302, 303]
"
create_dir "src/personalization_engine/model"
create_file "src/personalization_engine/model/recommendation_model.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('personalization_engine.model.recommendation_model')
class RecommendationModel:
def __init__(self):
pass
def train(self, data):
logger.info(\"Training recommendation model...\")
# Placeholder for training logic
def predict(self, user_id, item_id):
logger.info(f\"Predicting recommendations for User {user_id} and Item {item_id}\")
# Placeholder for prediction logic
return [301, 302, 303]
"
# 2.4 Cybersecurity AI Module
create_dir "src/cybersecurity_ai/threat_intelligence"
create_file "src/cybersecurity_ai/threat_intelligence/gnn_threat_analyzer.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('cybersecurity_ai.threat_intelligence')
class GNNThreatAnalyzer:
def __init__(self):
pass
def analyze(self, data):
logger.info(\"Analyzing threats using GNN...\")
# Placeholder for GNN threat analysis
return ['Threat1', 'Threat2']
"
create_dir "src/cybersecurity_ai/incident_response"
create_file "src/cybersecurity_ai/incident_response/reinforcement_responder.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('cybersecurity_ai.incident_response')
class ReinforcementResponder:
def __init__(self):
pass
def respond(self, threat):
logger.info(f\"Responding to threat: {threat}\")
# Placeholder for reinforcement learning-based response
return f\"Responded to {threat}\"
"
create_dir "src/cybersecurity_ai/anomaly_detection"
create_file "src/cybersecurity_ai/anomaly_detection/anomaly_detector.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('cybersecurity_ai.anomaly_detection')
class AnomalyDetector:
def __init__(self):
pass
def detect(self, data):
logger.info(\"Detecting anomalies...\")
# Placeholder for anomaly detection logic
return ['Anomaly Detected']
"
create_dir "src/cybersecurity_ai/anomaly_detection/rust_service/src"
create_file "src/cybersecurity_ai/anomaly_detection/rust_service/src/lib.rs" "// lib.rs (Rust Anomaly Detector Library)
pub fn detect_anomaly(data: &str) -> Vec<String> {
vec![\"Anomaly Detected\".to_string()]
}
"
create_dir "src/cybersecurity_ai/anomaly_detection/rust_service/tests"
create_file "src/cybersecurity_ai/anomaly_detection/rust_service/tests/lib_test.rs" "// lib_test.rs (Rust Anomaly Detector Tests)
use crate::detect_anomaly;
#[test]
fn test_detect_anomaly() {
let result = detect_anomaly(\"Test data\");
assert_eq!(result, vec![\"Anomaly Detected\".to_string()]);
}
"
create_dir "src/cpp_module/include"
create_file "src/cpp_module/include/cpp_anomaly_detector.h" "// cpp_anomaly_detector.h (C++ Anomaly Detector Header)
#ifndef CPP_ANOMALY_DETECTOR_H
#define CPP_ANOMALY_DETECTOR_H
#include <string>
#include <vector>
class CppAnomalyDetector {
public:
CppAnomalyDetector();
std::vector<std::string> detect(const std::string& data);
};
#endif // CPP_ANOMALY_DETECTOR_H
"
create_dir "src/cpp_module/src"
create_file "src/cpp_module/src/cpp_anomaly_detector.cpp" "// cpp_anomaly_detector.cpp (C++ Anomaly Detector Implementation)
#include \"cpp_anomaly_detector.h\"
CppAnomalyDetector::CppAnomalyDetector() {}
std::vector<std::string> CppAnomalyDetector::detect(const std::string& data) {
// Placeholder for C++ anomaly detection logic
return {\"Anomaly Detected\"};
}
"
create_dir "src/cpp_module/tests"
create_file "src/cpp_module/tests/test_cpp_anomaly_detector.cpp" "// test_cpp_anomaly_detector.cpp (C++ Anomaly Detector Unit Tests)
#define CATCH_CONFIG_MAIN
#include \"catch.hpp\"
#include \"cpp_anomaly_detector.h\"
TEST_CASE(\"CppAnomalyDetector detects anomalies\", \"[AnomalyDetector]\") {
CppAnomalyDetector detector;
std::vector<std::string> result = detector.detect(\"Test data\");
REQUIRE(result.size() == 1);
REQUIRE(result[0] == \"Anomaly Detected\");
}
"
create_file "src/cpp_module/tests/catch.hpp" "// catch.hpp (Catch2 Single Header)
#define CATCH_CONFIG_MAIN
#include <catch2/catch.hpp>
"
create_file "src/cpp_module/CMakeLists.txt" "cmake_minimum_required(VERSION 3.10)
project(CppAnomalyDetector)
set(CMAKE_CXX_STANDARD 17)
add_library(cpp_anomaly_detector STATIC src/cpp_anomaly_detector.cpp)
# Add include directories
target_include_directories(cpp_anomaly_detector PUBLIC include)
# Add executable for testing
add_executable(test_cpp_anomaly_detector tests/test_cpp_anomaly_detector.cpp)
# Link libraries
target_link_libraries(test_cpp_anomaly_detector cpp_anomaly_detector)
"
create_file "src/cpp_module/tests/CMakeLists.txt" "cmake_minimum_required(VERSION 3.10)
project(CppAnomalyDetectorTests)
# Add executable for tests
add_executable(test_cpp_anomaly_detector tests/test_cpp_anomaly_detector.cpp)
# Link libraries
target_link_libraries(test_cpp_anomaly_detector cpp_anomaly_detector)
"
# 2.5 Content Creation AI Module
create_dir "src/content_creation_ai/text_generation"
create_file "src/content_creation_ai/text_generation/gpt4_text_generator.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('content_creation_ai.text_generation')
class GPT4TextGenerator:
def __init__(self):
pass
def generate_text(self, prompt: str) -> str:
logger.info(f\"Generating text for prompt: {prompt}\")
# Placeholder for GPT-4 integration
return f\"Generated text based on: {prompt}\"
"
create_dir "src/content_creation_ai/multimedia_generation"
create_file "src/content_creation_ai/multimedia_generation/advanced_audio_generator.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('content_creation_ai.multimedia_generation')
class AdvancedAudioGenerator:
def __init__(self):
pass
def generate_audio(self, parameters: dict) -> str:
logger.info(f\"Generating audio with parameters: {parameters}\")
# Placeholder for advanced audio generation logic
return \"Generated audio file path\"
"
create_file "src/content_creation_ai/multimedia_generation/advanced_video_generator.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('content_creation_ai.multimedia_generation')
class AdvancedVideoGenerator:
def __init__(self):
pass
def generate_video(self, parameters: dict) -> str:
logger.info(f\"Generating video with parameters: {parameters}\")
# Placeholder for advanced video generation logic
return \"Generated video file path\"
"
create_dir "src/content_creation_ai/image_generation"
create_file "src/content_creation_ai/image_generation/dalle3_image_generator.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('content_creation_ai.image_generation')
class Dalle3ImageGenerator:
def __init__(self):
pass
def generate_image(self, prompt: str) -> str:
logger.info(f\"Generating image for prompt: {prompt}\")
# Placeholder for DALL·E 3 integration
return f\"Generated image based on: {prompt}\"
"
create_file "src/content_creation_ai/image_generation/stylegan3_image_generator.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('content_creation_ai.image_generation')
class StyleGAN3ImageGenerator:
def __init__(self):
pass
def generate_image(self, parameters: dict) -> str:
logger.info(f\"Generating image with parameters: {parameters}\")
# Placeholder for StyleGAN3 integration
return \"Generated StyleGAN3 image path\"
"
# 2.6 Healthcare AI Module
create_dir "src/healthcare_ai/drug_discovery"
create_file "src/healthcare_ai/drug_discovery/drug_discovery_ai.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('healthcare_ai.drug_discovery')
class DrugDiscoveryAI:
def __init__(self):
pass
def discover_drugs(self, target: str) -> list:
logger.info(f\"Discovering drugs for target: {target}\")
# Placeholder for drug discovery logic
return ['DrugA', 'DrugB']
"
create_dir "src/healthcare_ai/diagnostics"
create_file "src/healthcare_ai/diagnostics/diagnostics_ai.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('healthcare_ai.diagnostics')
class DiagnosticsAI:
def __init__(self):
pass
def diagnose(self, image_data: bytes) -> str:
logger.info(\"Diagnosing medical images...\")
# Placeholder for medical image diagnostics logic
return \"Diagnosis Result\"
"
# 2.7 AI Consulting Module
create_dir "src/ai_consulting/strategy_development"
create_file "src/ai_consulting/strategy_development/strategy_developer.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('ai_consulting.strategy_development')
class StrategyDeveloper:
def __init__(self):
pass
def develop_strategy(self, data: dict) -> dict:
logger.info(f\"Developing strategy with data: {data}\")
# Placeholder for strategy development logic
return {\"strategy\": \"Optimized Strategy\"}
"
# 2.8 VR/AR AI Module
create_dir "src/vr_ar_ai/object_recognition"
create_file "src/vr_ar_ai/object_recognition/real_time_tracking.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('vr_ar_ai.object_recognition.real_time_tracking')
class RealTimeTracking:
def __init__(self):
pass
def track_object(self, object_id: int) -> dict:
logger.info(f\"Tracking object ID: {object_id}\")
# Placeholder for real-time tracking logic
return {\"object_id\": object_id, \"status\": \"Tracking\"}
"
create_file "src/vr_ar_ai/object_recognition/object_detector.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('vr_ar_ai.object_recognition.object_detector')
class ObjectDetector:
def __init__(self):
pass
def detect_objects(self, image_data: bytes) -> list:
logger.info(\"Detecting objects in image data...\")
# Placeholder for object detection logic
return ['Object1', 'Object2']
"
create_dir "src/vr_ar_ai/personalized_experience"
create_file "src/vr_ar_ai/personalized_experience/adaptive_content.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('vr_ar_ai.personalized_experience')
class AdaptiveContent:
def __init__(self):
pass
def adapt_content(self, user_preferences: dict) -> dict:
logger.info(f\"Adapting content based on preferences: {user_preferences}\")
# Placeholder for adaptive content logic
return {\"content\": \"Personalized Content\"}
"
create_dir "src/vr_ar_ai/dynamic_content_generation"
create_file "src/vr_ar_ai/dynamic_content_generation/gan_content_generator.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('vr_ar_ai.dynamic_content_generation.gan_content_generator')
class GANContentGenerator:
def __init__(self):
pass
def generate_content(self, parameters: dict) -> str:
logger.info(f\"Generating content with GAN parameters: {parameters}\")
# Placeholder for GAN-based content generation logic
return \"Generated GAN Content\"
"
# 2.9 Supply Chain AI Module
create_dir "src/supply_chain_ai/logistics_optimization"
create_file "src/supply_chain_ai/logistics_optimization/supplier_risk_assessment.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('supply_chain_ai.logistics_optimization')
class SupplierRiskAssessment:
def __init__(self):
pass
def assess_risk(self, supplier_id: int) -> float:
logger.info(f\"Assessing risk for Supplier ID: {supplier_id}\")
# Placeholder for risk assessment logic
return 0.75
"
create_dir "src/supply_chain_ai/inventory_optimization"
create_file "src/supply_chain_ai/inventory_optimization/dynamic_pricing_model.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('supply_chain_ai.inventory_optimization')
class DynamicPricingModel:
def __init__(self):
pass
def set_price(self, product_id: int, price: float) -> float:
logger.info(f\"Setting dynamic price for Product ID: {product_id} to {price}\")
# Placeholder for dynamic pricing logic
return price
"
create_file "src/supply_chain_ai/inventory_optimization/erp_integration.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('supply_chain_ai.inventory_optimization')
class ERPIntegration:
def __init__(self):
pass
def integrate(self, data: dict) -> bool:
logger.info(f\"Integrating data with ERP system: {data}\")
# Placeholder for ERP integration logic
return True
"
create_file "src/supply_chain_ai/inventory_optimization/iot_data_integration.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('supply_chain_ai.inventory_optimization')
class IoTDataIntegration:
def __init__(self):
pass
def integrate_data(self, sensor_data: dict) -> bool:
logger.info(f\"Integrating IoT sensor data: {sensor_data}\")
# Placeholder for IoT data integration logic
return True
"
create_dir "src/supply_chain_ai/demand_prediction"
create_file "src/supply_chain_ai/demand_prediction/demand_predictor.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('supply_chain_ai.demand_prediction')
class DemandPredictor:
def __init__(self):
pass
def predict_demand(self, product_id: int) -> int:
logger.info(f\"Predicting demand for Product ID: {product_id}\")
# Placeholder for demand prediction logic
return 100
"
create_dir "src/supply_chain_ai/inventory_management"
create_file "src/supply_chain_ai/inventory_management/inventory_optimizer.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('supply_chain_ai.inventory_management')
class InventoryOptimizer:
def __init__(self):
pass
def optimize_inventory(self, product_id: int, stock_level: int) -> int:
logger.info(f\"Optimizing inventory for Product ID: {product_id} with stock level: {stock_level}\")
# Placeholder for inventory optimization logic
return stock_level + 50
"
# 2.10 AutoML Module
create_dir "src/automl"
create_file "src/automl/hyperparameter_tuning.py" "import optuna
import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('automl.hyperparameter_tuning')
def objective(trial):
# Placeholder for hyperparameter tuning logic
x = trial.suggest_float('x', -10, 10)
return (x - 2) ** 2
def tune_hyperparameters():
logger.info(\"Starting hyperparameter tuning...\")
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=100)
logger.info(f\"Best hyperparameters: {study.best_params}\")
logger.info(f\"Best objective value: {study.best_value}\")
return study.best_params, study.best_value
if __name__ == '__main__':
tune_hyperparameters()
"
create_file "src/automl/model_selection.py" "import logging
import logging.config
# Configure logging
logging.config.fileConfig('../../monitoring/logging/log_config.yaml', disable_existing_loggers=False)
logger = logging.getLogger('automl.model_selection')
class ModelSelection:
def __init__(self):
pass
def select_best_model(self, models: list, metrics: dict) -> str:
logger.info(f\"Selecting best model based on metrics: {metrics}\")
# Placeholder for model selection logic
return models[0]
"
# 2.11 Common Utilities
create_dir "src/common/utils"
create_file "src/common/utils/logging.py" "import logging
import logging.config
def setup_logging(default_path='../../monitoring/logging/log_config.yaml', default_level=logging.INFO):
logging.config.fileConfig(default_path, disable_existing_loggers=False)
"
# 3. Deployment Directory
create_dir "deployment"
# 3.1 Dockerfiles
create_dir "deployment/docker"
create_file "deployment/docker/ai_chatbot_Dockerfile" "FROM python:3.12-slim
WORKDIR /app
# Install Python dependencies
COPY src/ai_chatbot/requirements.txt ./
RUN pip install --no-cache-dir -r requirements.txt
# Copy source code
COPY src/ai_chatbot/ .
EXPOSE 8000
CMD [\"python\", \"chatbot.py\"]
"