-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
242 lines (189 loc) · 7.92 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from transformers import BertConfig, BertTokenizerFast, BertForSequenceClassification, AdamW, \
get_linear_schedule_with_warmup
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
import time
import datetime
import random
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int,
default=16,
help='The batch size. Our tuned value was 16.')
parser.add_argument('--learning-rate', type=int,
default=1e-4,
help='The learning-rate. Our tuned value as 1e-4.')
parser.add_argument('--epochs', type=int,
default=4,
help='The number of epochs. Note that the bert model comes already pretrained,'
' therefore a low number would be sufficient.')
parser.add_argument('--data-path', type=str,
default="./data/training_data.tsv",
help='The learning-rate. Our tuned value as 1e-4.')
parser.add_argument('--data-path', type=str,
default="./data/training_data.tsv",
help='The learning-rate. Our tuned value as 1e-4.')
args = parser.parse_args()
if torch.cuda.is_available():
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead. Consider using a GPU, as training on CPU might be very slow.')
device = torch.device("cpu")
print("---------------------------------")
print("--------preparing data-----------")
print("---------------------------------")
data = pd.read_csv(args.data_path, engine='python', encoding='utf-8', error_bad_lines=False, sep="\t")
data = data[['sentence', 'label_id']]
data = data.dropna()
data = data.groupby('label_id').filter(lambda x: len(x) > 1)
data['cat_label'] = pd.Categorical(data['label_id'])
data['training_label'] = data['cat_label'].cat.codes
data_train, data_val = train_test_split(data, test_size=0.1, stratify=data[['training_label']])
print("loading pretrained bert/tokenizer...")
model_name = 'bert-base-uncased'
max_length = 100
tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path=model_name, do_lower_case=True)
print("tokenize data...")
# creating input-ids and attention-masks of the sentences
x_train = tokenizer(
text=data_train['sentence'].to_list(),
add_special_tokens=True,
max_length=max_length,
truncation=True,
padding=True,
return_tensors='pt',
return_token_type_ids=False,
verbose=True)
x_val = tokenizer(
text=data_val['sentence'].to_list(),
add_special_tokens=True,
max_length=max_length,
truncation=True,
padding=True,
return_tensors='pt',
return_token_type_ids=False,
verbose=True)
# creating the target-label
y_train = torch.tensor(data_train.training_label.values, dtype=torch.long)
y_val = torch.tensor(data_val.training_label.values, dtype=torch.long)
# bringing it into pytorch format
train_dataset = TensorDataset(x_train['input_ids'], x_train['attention_mask'], y_train)
val_dataset = TensorDataset(x_val['input_ids'], x_val['attention_mask'], y_val)
train_dataloader = DataLoader(
train_dataset,
sampler=RandomSampler(train_dataset),
batch_size=args.batch_size
)
validation_dataloader = DataLoader(
val_dataset,
sampler=SequentialSampler(val_dataset),
batch_size=args.batch_size
)
print("---------------------------------")
print("-------configure Bert------------")
print("---------------------------------")
# loading bert for classification from huggingface
model = BertForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels=len(data_train.training_label.value_counts()),
output_attentions=False,
output_hidden_states=False,
)
model.cuda()
optimizer = AdamW(model.parameters(),
lr=args.learning_rate,
eps=1e-8
)
total_steps = len(train_dataloader) * args.epochs
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0,
num_training_steps=total_steps)
def flat_accuracy(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
def format_time(elapsed):
elapsed_rounded = int(round((elapsed)))
return str(datetime.timedelta(seconds=elapsed_rounded))
print("---------------------------------")
print("--------fine-tune bert-----------")
print("---------------------------------")
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
training_stats = []
total_t0 = time.time()
print('Starting the training...')
for epoch_i in range(0, args.epochs):
print(f'\n======== Epoch {epoch_i} / {args.epochs} ========')
t0 = time.time()
total_train_loss = 0
model.train()
# For each batch of training data...
for step, batch in enumerate(train_dataloader):
if step % 40 == 0 and not step == 0:
elapsed = format_time(time.time() - t0)
print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
model.zero_grad()
# Perform a forward pass (evaluate the model on this training batch).
loss, logits = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
total_train_loss += loss.item()
# Perform a backward pass to calculate the gradients.
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
# Update the learning rate.
scheduler.step()
avg_train_loss = total_train_loss / len(train_dataloader)
training_time = format_time(time.time() - t0)
print("\n Average training loss: {0:.2f}".format(avg_train_loss))
print(" Training epoch took: {:}".format(training_time))
print("\nRunning Validation...")
# validation
t0 = time.time()
model.eval()
total_eval_accuracy = 0
total_eval_loss = 0
nb_eval_steps = 0
for batch in validation_dataloader:
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
with torch.no_grad():
(loss, logits) = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
total_eval_loss += loss.item()
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
total_eval_accuracy += flat_accuracy(logits, label_ids)
avg_val_accuracy = total_eval_accuracy / len(validation_dataloader)
print(" Accuracy: {0:.2f}".format(avg_val_accuracy))
avg_val_loss = total_eval_loss / len(validation_dataloader)
validation_time = format_time(time.time() - t0)
print(" Validation Loss: {0:.2f}".format(avg_val_loss))
print(" Validation took: {:}".format(validation_time))
# log metrics: avg_val_accuracy, avg_val_loss
print("\nTraining complete!")
print("Total training took {:} (h:mm:ss)".format(format_time(time.time() - total_t0)))
print("---------------------------------")
print("----------saving model-----------")
print("---------------------------------")
# save trained model
output_dir = './model_save/'
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(output_dir)