-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnpcr.sage
154 lines (136 loc) · 4.59 KB
/
npcr.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
##########################################################################
# gadgets
##########################################################################
def gadgets(n,k):
# blue vertices 0,1,...,n-1 are placed clockwise on a circle
# a red vertex is placed somewhere between i and i+1 (mod n),
# which is marked by i.
# Arcs from the red vertex are are coloured in k colours 0..k-1, so that
# the arcs in the k-th sheet get colour k. This way we get k^n different gadgets
# for each placement of the red vertex. In total we'll have nk^n gadgets.
return [(x, y) for x in [0..n-1] for y in tuples([0..k-1],n)]
##########################################################################
# automorphisms
# 1. flips: any simultaneous changing of colours (so there are k! of these)
# 2. symmetries of the n-gon, dihedral (so there are 2n of these)
##########################################################################
def gadgets_flip(g,p): # p must be from S_k (type 1 automorphisms)
return [g.index((x, [p(y+1)-1 for y in s])) for x,s in g]
def gadgets_ia(g,p): # p must be from D_n (type 2 automorphisms)
# there is a subtle bug in the following:
# return [g.index((p(x+1)-1,permutation_action(p,s))) for x,s in g]
# namely, the action on the 1st coordinate of the tuple is wrong!
#
# in fact, this action must be the action on the edges (i,i+1) of the n-gon,
# for indices taken mod n; the edges are labelled by i, i=0..n-1.
# e.g. for n=3 we have the involition (0,2)
# taking the edge (0,1) to the edge (1,2), and not to (2,0).
n = len(g[0][1])
def ea(j):
i1 = p(j+1)-1
if j<n-1:
i2 = p(j+2)-1
else:
i2 = p(1)-1
if set([i1,i2])==set([0,n-1]):
return n-1
else:
return min(i1,i2)
return [g.index((ea(x),permutation_action(p,s))) for x,s in g]
def ggens(g,k):
H = SymmetricGroup(k)
G = DihedralGroup(len(g[0][1]))
gg=[G.gens()[1],G.gens()[1]*G.gens()[0]]
# print G.gens()
return [gadgets_flip(g,p) for p in H.gens()]+[gadgets_ia(g,p) for p in gg]
##########################################################################
# Crossing number of two gadgets.
##########################################################################
# helper functions
def sca(s,k): # scaling
c=[[] for i in xrange(k)]
for i in xrange(len(s)):
c[s[i]]+=[3*i]
return c
def crk(a,b,k):
i,s0 = a
j,q0 = b
i = 3*i + 1
j = 3*j + 1
z = zip(sca(s0,k), sca(q0,k))
#
# two gadgets (i,s) and (j,q) represent a 2-page drawing of K_{2,n}
# when i != j, we just count crossings in each hemisphere;
if i != j:
return sum([crcount(i,s,j,q) for s,q in z])
# otherwise, we try both possible orderings of i and j and take the minimum
else:
return min(sum([crcount(i, s, i+1, q) for s, q in z]),
sum([crcount(i+1, s, i, q) for s, q in z]))
def crcount(i,s,j,q):
# print i, " ", s, " ", j, " ", q, "\n"
c = 0
for x in s:
for y in q:
if i<j<x<y or j<x<y<i or x<y<i<j or y<i<j<x or \
i<y<x<j or y<x<j<i or x<j<i<y or j<i<y<x:
c += 1
return c
def crkmat(n,k):
g = gadgets(n,k)
return g,[[crk(a, b, k) for b in g] for a in g]
def permmat(p):
n = len(p)
def delt(i,j):
if i==j:
return 1
else:
return 0
return matrix(ZZ, n, n, lambda i, j: delt(p[j],i)) #, sparse=True)
def testM(n,k): # test that we have symmetries we should have
g,M=crkmat(n,k)
m=matrix(M)
return [m*permmat(p)==permmat(p)*m for p in ggens(g,k)]
############# output ###########
load orbitals.sage
# find the coefficients of expression of a sum of orbitals
def mexpress(M,O,test=False):
r = dict()
if test==True:
n = len(M[0])
for i in xrange(n):
for j in xrange(n):
o = O[i][j]
if o==(i,j):
if M[i][j] != 0:
r[(i,j)] = M[i][j]
else:
if M[i][j]!=M[o[0]][o[1]]:
return False,i,j
return r
else:
for i,j in O:
if M[i][j] != 0:
r[(i,j)] = M[i][j]
return r
def crkprt(n,k,fn):
f = file(fn,"w")
f2 = file(fn+"_2","w")
g,M=crkmat(n,k)
oo=orbitals(ggens(g,k), result="c") #"raw")
# f.write(str(M))
f.write(str(len(M))+"\n")
printorbitals(oo[1],oo[2],f,f2)
keys=sorted(oo[1].keys())
e = mexpress(M,keys)
# print sorted(e.keys())
f.write(str(len(e.keys()))+'\n')
for i in sorted(e.keys()):
f.write(str(1+keys.index(i))+" "+str(e[i])+'\n')
f.close()
f2.close()
# f.write(str(oo))
# f.write("\n")
# f.write(str(g))
# f.write("\n")
# f.close()