-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatlabTSP.m
132 lines (104 loc) · 3.74 KB
/
matlabTSP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
function sorted_tours = matlabTSP(num_stops, bs_x, bs_y)
figure;
%load('usborder.mat','x','y','xx','yy');
rng(3,'twister') % makes a plot with stops in Maine & Florida, and is reproducible
nStops = num_stops; % you can use any number, but the problem size scales as N^2
stopsLon = zeros(nStops,1); % allocate x-coordinates of nStops
stopsLat = stopsLon; % allocate y-coordinates
n = 1;
while (n <= nStops)
if n==1
xp = bs_x;
yp = bs_y;
else
xp = randi([-10 10],1,1);
yp = randi([-10 10],1,1);
end
stopsLon(n) = xp;
stopsLat(n) = yp;
n = n+1;
end
%plot(x,y,'Color','red'); % draw the outside border
hold on
% Add the stops to the map
plot(stopsLon,stopsLat,'*b')
grid on
set(gca,'Xtick',-10 : 1 : 10); %sets the numbered ticks 1 apart
set(gca,'Ytick',-10 : 1 : 10); %same as above
%%%%%
idxs = nchoosek(1:nStops,2);
%%%%%%
dist = hypot(stopsLat(idxs(:,1)) - stopsLat(idxs(:,2)), ...
stopsLon(idxs(:,1)) - stopsLon(idxs(:,2)));
lendist = length(dist);
%%%%%%
Aeq = spones(1:length(idxs)); % Adds up the number of trips
beq = nStops;
%%%%%%
Aeq = [Aeq;spalloc(nStops,length(idxs),nStops*(nStops-1))]; % allocate a sparse matrix
for ii = 1:nStops
whichIdxs = (idxs == ii); % find the trips that include stop ii
whichIdxs = sparse(sum(whichIdxs,2)); % include trips where ii is at either end
Aeq(ii+1,:) = whichIdxs'; % include in the constraint matrix
end
beq = [beq; 2*ones(nStops,1)];
%%%%%%
intcon = 1:lendist;
lb = zeros(lendist,1);
ub = ones(lendist,1);
%%%%%
opts = optimoptions('intlinprog','Display','off','Heuristics','round-diving',...
'IPPreprocess','none');
[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,[],[],Aeq,beq,lb,ub,opts);
%%%%%%
segments = find(x_tsp); % Get indices of lines on optimal path
lh = zeros(nStops,1); % Use to store handles to lines on plot
lh = matlabUpdatePlot(lh,x_tsp,idxs,stopsLon,stopsLat);
title('2-OPT Approximate Path');
%%%%
tours = matlabSubtours(x_tsp,idxs);
numtours = length(tours); % number of subtours
fprintf('# of subtours: %d\n',numtours);
%%%%
A = spalloc(0,lendist,0); % Allocate a sparse linear inequality constraint matrix
b = [];
while numtours > 1 % repeat until there is just one subtour
% Add the subtour constraints
b = [b;zeros(numtours,1)]; % allocate b
A = [A;spalloc(numtours,lendist,nStops)]; % a guess at how many nonzeros to allocate
for ii = 1:numtours
rowIdx = size(A,1)+1; % Counter for indexing
subTourIdx = tours{ii}; % Extract the current subtour
% The next lines find all of the variables associated with the
% particular subtour, then add an inequality constraint to prohibit
% that subtour and all subtours that use those stops.
variations = nchoosek(1:length(subTourIdx),2);
for jj = 1:length(variations)
whichVar = (sum(idxs==subTourIdx(variations(jj,1)),2)) & ...
(sum(idxs==subTourIdx(variations(jj,2)),2));
A(rowIdx,whichVar) = 1;
end
b(rowIdx) = length(subTourIdx)-1; % One less trip than subtour stops
end
% Try to optimize again
[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,A,b,Aeq,beq,lb,ub,opts);
% Visualize result
lh = matlabUpdatePlot(lh,x_tsp,idxs,stopsLon,stopsLat);
pause(0.5)
% How many subtours this time?
tours = matlabSubtours(x_tsp,idxs);
numtours = length(tours); % number of subtours
fprintf('# of subtours: %d\n',numtours);
end
%%%%
tours_index = tours{1};
conc_stops = [stopsLon stopsLat];
sorted_tours = conc_stops;
for i = 1:length(tours_index)
index = tours_index(i);
sorted_tours(i, 1:2) = conc_stops(index, 1:2);
end
%title('2-OPT Approximate Path');
hold on
disp(output.absolutegap)
end