-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_signature.R
316 lines (266 loc) · 12 KB
/
find_signature.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
library('tm')
library('topicmodels')
library('ggplot2')
library('fields')
library('nnls')
#source('get_error_frob.R')
source('class_defs.R')
source('make_dtm_from_vcf.R')
setMethod("set.stack", signature(object = "sign.stack"), function(object, input.dtm, nsig.min, nsig.max, nsig.step = as.integer(1), method = 'ctm'){
object@nsig.min <- as.integer(nsig.min)
object@nsig.max <- as.integer(nsig.max)
object@nsig.step <- as.integer(nsig.step)
object@method <- method
object@input.dtm <- input.dtm
object@types <- input.dtm$dimnames$Terms
number.of.insts <- (nsig.max - nsig.min)/(nsig.step) + 1
object@num.insts <- as.integer(number.of.insts)
object@insts <- lapply( rep("sign.inst", number.of.insts), FUN = new )
index <- 1
for(nsig_inst in seq(from = nsig.min, to = nsig.max, by = nsig.step)){
object@insts[[index]]@nsig <- as.integer(nsig_inst)
index <- index + 1
}
print('end of set stack')
return(object)
})
#getters used in apply
setMethod(".same.dim", signature(object = "sign.inst"), function(object, nsig.comp){
return(object@nsig != nsig.comp)
})
setMethod("get.signs", signature(object = "sign.inst"), function(object, by = "inst"){
return(object@signs[by])
})
setMethod("get.exps", signature(object = "sign.inst"), function(object, by = "inst"){
return(object@exps[by])
})
setMethod("get.frob.err", signature(object = "sign.inst"), function(object, by = "inst"){
return(object@frob.err[by])
})
#looks at the list of signatures, median, mean, q1, q3 for clusters
#or just inst for single iterations and returns the error as a list
#with the same names
setMethod("calc.frob.error", signature(object = "sign.inst"), function(object, input.matrix){
by <- names(object@signs)
error.list <- list()
for(icalc in 1:length(by)){
exposures <- object@exps[[icalc]]
signatures <- object@signs[[icalc]]
if(round(sum(exposures[,1]), digit = 0) == 1){
for(i in 1:ncol(exposures)){
exposures[,i] = sum(input.matrix[,i])*exposures[,i]
}
}
reco <- signatures %*% exposures
diff <- input.matrix - reco
error <- sqrt(sum(diag(t(diff) %*% (diff))))
error <- error/sqrt(sum(diag(t(input.matrix) %*% (input.matrix))))
error.list[[by[[icalc]]]] <- error
}
return(error.list)
})
setMethod("cluster.signs", signature(object = "sign.stack"), function(object){
nsig <- object@insts[[1]]@nsig
ntype <- dim(object@insts[[1]]@signs$inst)[[1]]
ngenome <- dim(object@insts[[1]]@exps$inst)[[2]]
ninst <- object@nsig.max - object@nsig.min + 1
perplexity <- rep(0, ninst)
bic <- rep(0, ninst)
print(sprintf('total insts: %d', ninst))
if(sum(sapply(object@insts, .same.dim, nsig.comp = nsig)) != 0) stop('clustering works on iterations on same number of sign\
s')
perplexity <- sapply(object@insts, calc.perplexity.inst, new.data = object@input.dtm, method.desc = object@method)
bic <- sapply(object@insts, calc.bic.inst, input.dtm = object@input.dtm, method.desc = object@method)
list.all.inst.signs <- sapply(object@insts, get.signs)
list.all.inst.exps <- sapply(object@insts, get.exps)
matrix.all.inst.signs <- matrix(unlist(list.all.inst.signs), byrow = TRUE, nrow = nsig*ninst)
matrix.all.inst.exps <- matrix(unlist(list.all.inst.exps), byrow = TRUE, nrow = nsig*ninst)
save(matrix.all.inst.signs, file = 'test.Rda')
rm(list.all.inst.signs)
rm(list.all.inst.exps)
error.vector <- sapply(object@insts, get.frob.err, by = "inst")
error.vector <- as.vector(sapply(error.vector, rep, times = nsig))
# matrix.all.inst.signs <- matrix.all.inst.signs[!which(error.vector > 0.5),]
# matrix.all.inst.exps <- matrix.all.inst.exps[!which(error.vector > 0.5),]
sign.clusters <- kmeans(matrix.all.inst.signs, centers = nsig, nstart = 20)
#calculate silhouette width
dist.for.all <- rdist(matrix.all.inst.signs)
sd.silhou <- rep(0, nsig)
mean.silhou <- rep(0, nsig)
median.silhou <- rep(0, nsig)
q1.silhou <- rep(0, nsig)
q3.silhou <- rep(0, nsig)
for(isig in 1:nsig){
indices.clus <- which(sign.clusters$cluster == isig)
dist.same.clus <- dist.for.all[indices.clus,]
dist.other.clus <- dist.for.all[-indices.clus,]
ai.vec <- (length(indices.clus)*apply(dist.same.clus, 2, mean)/(length(indices.clus) + 1))[indices.clus]
bi.vec <- apply(dist.other.clus, 2, min)[indices.clus]
f.sil <- function(x,y){
if(x < y) return( 1- x/y)
else if(x == y) return(0)
else return(y/x - 1)
}
si.vec <- mapply(f.sil, ai.vec, bi.vec)
mean.silhou[[isig]] <- mean(si.vec)
sd.silhou[[isig]] <- sd(si.vec)
median.silhou[[isig]] <- median(si.vec)
q1.silhou[[isig]] <- median(si.vec[si.vec < median(si.vec)])
q3.silhou[[isig]] <- median(si.vec[si.vec > median(si.vec)])
}
mean.perplexity <- mean(perplexity)
median.perplexity <- median(perplexity)
sd.perplexity <- sd(perplexity)
q1.perplexity <- median(perplexity[perplexity < median.perplexity])
q3.perplexity <- median(perplexity[perplexity > median.perplexity])
mean.bic <- mean(bic)
median.bic <- median(bic)
sd.bic <- sd(bic)
q1.bic <- median(bic[bic < median.bic])
q3.bic <- median(bic[bic > median.bic])
median.signs <- matrix(0, ntype, nsig)
mean.signs <- matrix(0, ntype, nsig)
q1.signs <- matrix(0, ntype, nsig)
q3.signs <- matrix(0, ntype, nsig)
median.exps <- matrix(0, nsig, ngenome)
mean.exps <- matrix(0, nsig, ngenome)
q1.exps <- matrix(0, nsig, ngenome)
q3.exps <- matrix(0, nsig, ngenome)
for(isig in 1:nsig){
matrix.inst <- matrix.all.inst.signs[sign.clusters$cluster == isig,]
median.signs[,isig] <- apply(matrix.inst, 2, median)
mean.signs[,isig] <- apply(matrix.inst, 2, mean)
q1.signs[,isig] <- apply(matrix.inst , 2, function(x){ median(x[x < median(x)])})
q3.signs[,isig] <- apply(matrix.inst , 2, function(x){ median(x[x > median(x)])})
}
median.exps <- apply(object@input.matrix, 2, function(x, signs) coef(nnls(signs, x)), signs = median.signs)
mean.exps <- apply(object@input.matrix, 2, function(x, signs) coef(nnls(signs, x)), signs = mean.signs)
q1.exps <- apply(object@input.matrix, 2, function(x, signs) coef(nnls(signs, x)), signs = q1.signs)
q3.exps <- apply(object@input.matrix, 2, function(x, signs) coef(nnls(signs, x)), signs = q3.signs)
cluster.centers <- new("sign.inst")
signs.l <- list(median = median.signs,
mean = mean.signs,
q1 = q1.signs,
q3 = q3.signs )
exps.l <- list(median = median.exps,
mean = mean.exps,
q1 = q1.exps,
q3 = q3.exps )
perp.l <- list(median = median.perplexity,
mean = mean.perplexity,
q1 = q1.perplexity,
q3 = q3.perplexity)
bic.l <- list(median = median.bic,
mean = mean.bic,
q1 = q1.bic,
q3 = q3.bic)
silhou.l <- list(median = median.silhou,
mean = mean.silhou,
q1 = q1.silhou,
q3 = q3.silhou,
sd = sd.silhou)
cluster.centers@signs <- signs.l
cluster.centers@exps <- exps.l
cluster.centers@perp <- perp.l
cluster.centers@bic <- bic.l
cluster.centers@silhou.width <- silhou.l
cluster.centers@nsig <- nsig
return(cluster.centers)
})
#runs one topic model calculation for a single inst
#saves the signatures exposures and error
setMethod(".run.iter", signature(object = "sign.inst"), function(object, n.iter, input.dtm, input.matrix, isig, method){
seed.inst <- object@iter + 2000
object <- new("sign.inst")
object@nsig <- isig
if(method == "ctm"){
inst.method <- CTM(input.dtm, isig, method = "VEM", control = list( cg = (list (iter.max = 500L, tol = 10^-4)), seed = seed.inst)) #add object@iter before 200
object@method <- new('topic.mod.obj', ctm = inst.method)
}else if(method == "lda"){
inst.method <- LDA(input.dtm, isig, method = "Gibbs", control = list(seed = seed.inst)) #add object@iter before 300
object@method <- new('topic.mod.obj', lda = inst.method)
}else stop(sprintf('invalid method %s', object@method))
beta<-slot(inst.method, 'beta')
gamma<-slot(inst.method, 'gamma')
object@signs <- list( inst = exp(t(beta)))
object@exps <- list( inst = t(gamma))
error <- calc.frob.error(object, input.matrix)
object@frob.err <- error
return(object)
})
setMethod(".get.min.inst", signature(object = "sign.stack"), function(object){
error.vector <- unlist(sapply(object@insts, get.frob.err))
min.ind <- which(min(error.vector) == error.vector)
return(object@insts[[min.ind[[1]]]])
})
setMethod("run.calc", signature(object = "sign.stack"), function(object, cluster = FALSE, n.iter = 400){
index <- 1
input.matrix <- t(as.matrix(object@input.dtm))
object@input.matrix <- input.matrix
for(isig in seq(from = object@nsig.min, to = object@nsig.max, by = object@nsig.step)){
print(sprintf("signature %d", isig))
stack.tmp <- new("sign.stack")
stack.tmp <- set.stack(stack.tmp, input.dtm = object@input.dtm, method = object@method, nsig.min = 1, nsig.max = n.iter)
stack.tmp@input.matrix <- input.matrix
stack.tmp@insts <- lapply(seq_along(stack.tmp@insts), function(y, i){y[[i]]@iter <- i; return(y[[i]])}, y = stack.tmp@insts)
#when you do this step multi core change n.iter
#split it into groups rather than per iteration
stack.tmp@insts <- lapply(stack.tmp@insts, .run.iter, n.iter = n.iter, input.dtm = object@input.dtm, input.matrix = input.matrix, isig = isig, method = object@method)
min.inst <- .get.min.inst(stack.tmp)
if(cluster){
save(stack.tmp, file = "test.Rda")
cluster.center <- cluster.signs(stack.tmp)
object@insts[[index]] <- cluster.center
object@insts[[index]]@frob.err <- calc.frob.error(cluster.center, input.matrix)
}
object@min.insts[[index]] <- min.inst
object@min.insts[[index]]@frob.err <- calc.frob.error(min.inst, input.matrix)
object@min.insts[[index]]@perp <- list(inst = calc.perplexity.inst(min.inst, object@input.dtm, object@method))
object@min.insts[[index]]@bic <- list(inst = calc.bic.inst(min.inst, object@input.dtm, object@method))
object@min.insts[[index]]@silhou.width <- list(inst = 1)
index <- index + 1
}
rm(input.matrix)
rm(min.inst)
rm(stack.tmp)
return(object)
})
setMethod("calc.perplexity.inst", signature(object = "sign.inst"), function(object, new.data, method.desc){
perplexity <- 0
if(method.desc == "ctm") perplexity <- perplexity(object@method@ctm, new.data)
else if(method.desc == "lda") perplexity <- perplexity(object@method@lda, new.data)
else stop(sprintf('invalid method %s', method.desc))
return(perplexity)
})
setMethod("calc.bic.inst", signature(object = "sign.inst"), function(object, input.dtm, method.desc){
if(method.desc == "ctm") method <- object@method@ctm
else if(method.desc == "lda") method <- object@method@lda
else stop(sprintf('invalid method %s', method.desc))
ngenome <- input.dtm$nrow
ntype <- input.dtm$ncol
nsig <- object@nsig
bic <- (2*as.numeric(logLik(method))) - (ngenome + ntype)*log(ngenome)*nsig
return(bic)
})
find_signatures <- function(){
nsig_max = 9
nsig_min = 2
# input_file_list <- 'test.txt'
# dtm <- make_dtm_from_vcf_list(input_file_list)
load('kidney_dtm_ncontext_3.Rda')
# dtm <- make_dtm_from_vcf_list(input_file_list, ncontext = 5)
signature_stack <- new("sign.stack")
signature_stack <- set.stack(signature_stack, input.dtm = dtm, nsig.min = nsig_min, nsig.max = nsig_max, method = "lda")
signature_stack <- run.calc(signature_stack, cluster = TRUE)
# print('calculatingperplexity')
# signature_stack <- calc.perplexity(signature_stack,dtm)
# print('calculating bic')
# signature_stack <- calc.bic(signature_stack)
save(signature_stack, file = "test_output_kidney_dim_2_9_lda_sil_min_context3.Rda")
print(signature_stack@num.insts)
for(index in 1:signature_stack@num.insts){
inst <- signature_stack@insts[[index]]
print(sprintf('nsig: %d, error: %.3f, perplexity: %.3f, bic %.0f', inst@nsig, inst@frob.err, inst@mean.perp, inst@bic))
}
rm(signature_stack)
}