-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathutils.py
46 lines (36 loc) · 1.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
os.environ["OMP_NUM_THREADS"] = "1"
import numpy as np
import torch
import json
import spdlog as spd
import math
CPU_DEV = torch.device("cpu")
def setup_spdlogger(args):
log = spd.FileLogger(
f"fast_logger_{args.env}", f"{args.log_dir}/{args.env}_log", multithreaded=False, truncate=True
)
log.set_pattern("%H:%M:%S.%f: %v")
log.set_level(spd.LogLevel.INFO)
log.flush_on(spd.LogLevel.INFO)
return log
def set_console_spdlog(args):
log = spd.ConsoleLogger(f"fast_logger_{args.env}_mon", False, True, True)
log.set_pattern("%H:%M:%S.%f: %v")
log.set_level(spd.LogLevel.INFO)
log.flush_on(spd.LogLevel.INFO)
return log
def read_config(file_path):
"""Read JSON config."""
json_object = json.load(open(file_path, "r"))
return json_object
def ensure_shared_grads(model, shared_model, gpu=False):
for param, shared_param in zip(model.parameters(), shared_model.parameters()):
if shared_param.grad is not None and not gpu:
return
elif gpu:
shared_param._grad = param.grad.to(device=CPU_DEV, non_blocking=True)
if not shared_param.grad.bool().any():
shared_param._grad = param.grad.to(device=CPU_DEV)
else:
shared_param._grad = param.grad