-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflbeia_gadget_mse_age_4s_had_sam.R
477 lines (427 loc) · 20.2 KB
/
flbeia_gadget_mse_age_4s_had_sam.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# FLBEIA-Gadget MSE framework with the simple haddock Gadget example model (J. Begley) as operating model and SAM as assessment model
# updated 11-jun-2020
## conditioning the operating model
## install packages
#devtools::install_github("REDUS-IMR/FLBEIA", ref="FLBEIAgadget") # FLBEIA modified to work with a gadget model as OM
#devtools::install_github("REDUS-IMR/gadget", ref="gadgetr")
#devtools::install_github("hafro/rgadget")
## load packages
library(dplyr)
library(FLCore)
library(FLAssess)
library(FLash)
library(FLFleet)
library(FLa4a)
library(FLBEIA) # requires FLEBIAgadget version
library(ggplot2)
library(FLSAM) # requires FLBIEAgadget version
library(gtools)
library(Rgadget)
library(gadgetr)
## a simple example with single stock, single fleet and one iteration.
## change the working directory to the location of the gadget model
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
path_model <- paste0("models/had")
setwd(list.dirs(path = path_model, recursive = T)[1])
mypath <- getwd()
## To estimate the model parameters the suggested procedure is to use the iterative reweighting approach (gadget.iterative)
## fit <- gadget.fit()
paramsfile <- 'refinputfile'
fit <- gadget.fit(wgts = NULL, params.file = paramsfile, steps = "all")
## reset the directory
setwd("../..")
dir <- getwd()
## FLBEIA Conditioning
## biols:
first.yr <- 1978
proj.yr <- 2000
last.yr <- 2020
yrs <- c(first.yr = first.yr, proj.yr = proj.yr, last.yr = last.yr)
fls <- c('fl1')
stks <- c('stk1')
fl1.mets <- c('met1')
fl1.met1.stks <- c('stk1')
ni <- 1 # If gadget is the OM, it only works w/ ni=1
it <- 1:ni
ns <- 4
na <- 1
nu <- 1
stk1.age.min <- 1
stk1.age.max <- 10
stk1.unit <- 1
## main.ctrl
main.ctrl <- list()
main.ctrl$sim.years <- c(initial = proj.yr, final = last.yr)
## Data: stk1_n.flq, m, spwn, fec, wt - use FLQuant
## stock stk1
## get the stock input data (derived from the Gadget model fitting output or assessments)
## read in gadget output
## stock number by age - stock size only for 'hindcasts'
data_n <- fit$stock.std %>% filter(year < proj.yr) %>% select(year, step, age, area, number) %>% rename(season = step, data = number)
## stock weight by age
data_wt <- fit$stock.std %>% filter(year < proj.yr) %>% select(year, step, age, area, mean_weight) %>% rename(season = step, data = mean_weight)
## recruit number
data_rec <- fit$stock.recruitment %>% filter(year < proj.yr)
## create FLQuant objects
stk1_n.flq <- iter(as.FLQuant(as.data.frame(data_n)), it)
stk1_n.flq[1, ] <- data_rec$recruitment # replace by recruit number if not in the Gadget 'immature' stock
stk1_wt.flq <- iter(as.FLQuant(as.data.frame(data_wt)), it)
stk1_m.flq <- FLQuant(c(0.5/4, 0.2/4, 0.2/4, 0.2/4, 0.2/4, 0.2/4, 0.2/4, 0.2/4, 0.2/4, 0.2/4), # natural mortality per Q
dim=c(stk1.age.max, proj.yr-first.yr, na, ns),
quant='age', dimnames=list(age = stk1.age.min:stk1.age.max,
year = first.yr:(proj.yr-1),
season = 1:ns))
stk1_spwn.flq <- FLQuant(1,
dim = c(stk1.age.max, proj.yr-first.yr, 1, ns),
quant = 'age',
dimnames=list(age = stk1.age.min:stk1.age.max,
year = first.yr:(proj.yr-1),
season = 1:ns))
stk1_fec.flq <- FLQuant(c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1),
dim=c(stk1.age.max, proj.yr-first.yr,1, ns),
quant='age',
dimnames=list(age = stk1.age.min:stk1.age.max,
year = first.yr:(proj.yr-1),
season = 1:ns))
stk1_mat.flq <- stk1_fec.flq
stk1_mat.flq[2:stk1.age.max] <- c(1, 1, 1, 1, 1, 1, 1, 1, 1)
stk1_range.min <- 1
stk1_range.max <- 10
stk1_range.plusgroup <- 10
stk1_range.minyear <- 1978
stk1_range.minfbar <- 2
stk1_range.maxfbar <- 8
## Projection biols
stk1_biol.proj.avg.yrs <- c((proj.yr-3):(proj.yr-1))
## Create the object
stks.data <- list(stk1=ls(pattern="^stk1"))
biols <- create.biols.data(yrs, ns, ni, stks.data)
## biols.ctrl:
growth.model <- c('gadgetGrowth')
biols.ctrl <- create.biols.ctrl(stksnames = stks, growth.model = growth.model)
## SRs:
## stock-recruitment model
data_rec <- data_rec %>% select(year, area, recruitment) %>% rename(data = recruitment)
data_rec$data <- data_rec$data/10000
data_rec$age <- 1
stk1_rec.flq <- iter(as.FLQuant(as.data.frame(data_rec)), it)
stk1_ssb.flq <- ssb(biols[[1]][, 1:(proj.yr-first.yr),,])
## fit the stock-recruit model
stk1_sr.model <- 'rickerAR1'
stk1_params.n <- 3
stk1_params.name <- c('a','b','c')
sr.modelfit <- fmle(FLSR(model = stk1_sr.model,
ssb = stk1_ssb.flq[, 1:(proj.yr-first.yr-1), , 1],
rec = stk1_rec.flq[, 2:(proj.yr-first.yr), , 1]))
sr_params = as.data.frame(FLQuant((sr.modelfit@params@.Data[, 1]),
dim = c(stk1_params.n, last.yr-first.yr+1, 1, ns, 1, ni),
quant = 'param',
dimnames = list(param = c("a", "b", "c"),
year = first.yr:last.yr,
#area = na,
season = 1:ns,
iter = it)))
stk1_params.array <- xtabs2(data ~ param + year + season + iter,
data = sr_params,
exclude = NULL,
na.action = na.pass)[, , , it, drop = F]
stk1_uncertainty.flq <- FLQuant(c(1.5),
dim = c(1.1, last.yr-first.yr+1, 1, ns, 1, ni),
dimnames = list(year = first.yr:last.yr, season = 1:ns, iter = it))
stk1_proportion.flq <- FLQuant(0,
dim = c(1, last.yr-first.yr+1, 1, ns, 1, ni),
dimnames = list(year = first.yr:last.yr, season = 1:ns, iter = it))
stk1_proportion.flq[, , , 1][] <- 1 # all spawning occurs in season 1
stk1_prop.avg.yrs <- c((proj.yr-3):(proj.yr-1))
stk1_timelag.matrix <- matrix(c(0, 1), nrow = 2, ncol = 1, dimnames = list(c('year', 'season'), 'all'))
## create SRs objects
stks.data <- list(stk1 = ls(pattern = "^stk1"))
SRs <- create.SRs.data(yrs, ns, ni, stks.data)
## Data per fleet - catch/landings from the gadget model output
data_catch <- fit$stock.prey %>% filter(year < proj.yr) %>% select(year, step, age, area, biomass_consumed) %>% rename(season = step, data = biomass_consumed)
## landings.n, discards.n,landings.wt, discards.wt, landings, discards, landings.sel, discards.sel, price
fl1.met1.stk1_landings.n.flq <- iter(as.FLQuant(as.data.frame(data_catch)), it)
fl1.met1.stk1_discards.n.flq <- fl1.met1.stk1_landings.n.flq
fl1.met1.stk1_discards.n.flq[] <- 0
## economic parameter values are arbitrarily set for this example
fl1_effort.flq <- FLQuant(1,
dim = c(1, proj.yr-first.yr, 1, ns),
dimnames = list(year = first.yr:(proj.yr-1), season = 1:ns, iter = it))
fl1_capacity.flq <- FLQuant(1,
dim = c(1, proj.yr-first.yr, 1, ns),
dimnames = list(year = first.yr:(proj.yr-1), season = 1:ns, iter = it))
fl1_fcost.flq <- FLQuant(1,
dim = c(1, proj.yr-first.yr, 1, ns),
dimnames = list(year = first.yr:(proj.yr-1), season = 1:ns, iter = it))
fl1_crewshare.flq <- FLQuant(1,
dim = c(1, proj.yr-first.yr, 1, ns),
dimnames = list(year = first.yr:(proj.yr-1), season = 1:ns, iter = it))
fl1.met1_effshare.flq <- FLQuant(1,
dim = c(1, proj.yr-first.yr, 1, ns),
dimnames = list(year = first.yr:(proj.yr-1), season = 1:ns, iter = it))
## fleets: fl1
fl1_proj.avg.yrs <- c((proj.yr-3):(proj.yr-1))
fl1.met1_proj.avg.yrs <- c((proj.yr-3):(proj.yr-1))
fl1.met1.stk1_proj.avg.yrs <- c((proj.yr-3):(proj.yr-1))
## create fleets object
fls.data <- list(fl1 = ls(pattern = "^fl1"))
fleets <- create.fleets.data(yrs, ns, ni, fls.data, stks.data)
## fleets.ctrl:
n.fls.stks <- 1
fls.stksnames <- 'stk1'
effort.models <- 'fixedEffort'
effort.restr.fl1 <- 'stk1'
restriction.fl1 <- 'catch'
catch.models <- 'gadgetCatch'
capital.models <- 'fixedCapital'
flq.stk1 <- FLQuant(dimnames = list(age = 'all',
year = first.yr:last.yr,
unit = stk1.unit,
season = 1:ns,
iter = 1:ni))
fleets.ctrl <- create.fleets.ctrl(fls = fls,
n.fls.stks = n.fls.stks,
fls.stksnames = fls.stksnames,
effort.models = effort.models,
catch.models = catch.models,
capital.models = capital.models,
flq = flq.stk1,
effort.restr.fl1 = effort.restr.fl1,
restriction.fl1 = restriction.fl1)
fleets.ctrl$fl1$stk1$discard.TAC.OS <- FALSE
fleets.ctrl$fl1$restriction <- "landings"
## BDs/covars/covars.ctrl/ NULL objects
BDs <- NULL
covars <- NULL
covars.ctrl <- NULL
## Gadget parameters placeholders
oneGDGT <- list()
oneGDGT$gadget.inputDir <- paste0(getwd(), "/models/had")
oneGDGT$gadget.mainFile <- "main"
oneGDGT$gadget.paramFile <- "refinputfile"
oneGDGT$runNow <- FALSE
oneGDGT$fleetMode <- "exclusive" # "exclusive" = gadget fleets only model, "mixed" = FLBEIA & gadget fleets mode
## setting up gadget an OM
## If Gadget model names and FLBEIA names are not the same
convertStockName <- list(stk1 = "had")
convertFleetName <- list(fl1 = "future")
stockList <- c("had")
## specify stocks and fleets for gadget input and simulations
had.fleets <- c("comm", "survey", "future")
had.stocks <- c("had")
had.stocks.mature <- c("had")
had.surveys <- c("survey")
had.forecasts <- c("future")
had.forecasts.tac.proportion <- c(0.232, 0.351, 0.298, 0.119) ## this needs to be the same as FLBEIA
#had.forecasts.tac.proportion <- c(1, 1, 1, 1)
## specify fleets and metiers
fleetList <- c("fl1")
## Below is using the same information as the FLBEIA conditioning
#fl1.mets <- c('met1')
#fl1.met1.stks <- c('stk1')
## parameterize mortality
## m2=NULL means we calculate m2 from gadget result, m2=0 means we use only residual mortality (m1).
## NOTE: m1 can be a vector or scalar.
## stockStep is the step number where the stock is going to be calculated
stockstep = 4
stk1_ind1_range.startf <- 0.12 # the initial time step
stk1_ind1_range.endf <- 1 - 0.12 # the last time step
had.params <- list(stockStep = stockstep,
minage = stk1.age.min,
maxage = stk1.age.max,
minfbar = stk1_range.minfbar,
maxfbar = stk1_range.maxfbar,
startf = stk1_ind1_range.startf,
endf = stk1_ind1_range.endf,
m1 = c(0.5, 0.35, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.4, 0.7),
m2 = NULL)
## gadget simulation parameters (should be the same as FLBEIA)
firstYear <- first.yr
projYear <- proj.yr
finalYear <- last.yr
## reset the directory
dir <- getwd()
## Load helper functions
source(paste0(dir, "/gadget-fls.R"), local = T)
#----------------
#updateFLFleet("fl1", 0 , 0 , 0)
#stop()
## management procedure (MP)
## indices:
flq <- biols[["stk1"]]@n[ , , , 1]
#dimnames(flq)$season <- "all"
unc <- id <- q <- flq
unc[] <- rlnorm(prod(dim(flq)), 0, 0.3)
q[] <- rep(runif(dim(flq)[1], 1e-05/2, 1e-05*5), dim(flq)[2])
id <- biols[["stk1"]]@n[ , , , 1]*unc*q
#dimnames(id)$season <- "all"
stk1_indices <- c('ind1')
stk1_ind1_index.flq <- id
stk1_ind1_index.q.flq <- q
stk1_ind1_index.var.flq <- unc
stk1_ind1_range.startf <- 0.12
stk1_ind1_range.endf <- 1 - 0.12
stk1_ind1_range.min <- stk1.age.min+1
stk1_ind1_range.max <- stk1.age.max
## YFT_cpue_range.plusgroup <- 0
stk1_ind1_range.minyear <- first.yr
stk1_ind1_range.maxyear <- proj.yr-1
stk1_ind1_type <- "FLIndex"
## create indices objects
stks.data <- list(stk1 = ls(pattern = "^stk1"))
oneIndAge <- create.indices.data(yrs, 1, ni, stks.data)
### obs.ctrl:
## age-structured observation model (age2ageDat)
stkObs.models <- 'age2ageDat'
flq.stk1 <- FLQuant(dimnames = list(age = 'all',
year = first.yr:last.yr,
unit = stk1.unit,
#season = "all",
iter = 1:ni))
obs.ctrl.age <- create.obs.ctrl(stksnames = stks,
stkObs.models = stkObs.models,
flq.stk1 = flq.stk1)
obs.ctrl.age[['stk1']][['indObs']] <- vector('list', 1)
names(obs.ctrl.age[['stk1']][['indObs']]) <- c("ind1")
obs.ctrl.age[['stk1']][['indObs']][['ind1']] <- list()
obs.ctrl.age[['stk1']][['indObs']][['ind1']][['indObs.model']] <- 'ageInd'
nage <- stk1.age.max
ny <- length(first.yr:last.yr)
ages.error <- array(0, dim = c(nage, nage, ny, ni))
## generate errors using the Dirichlet distribution (n, alpha)
for(a in 1:nage){
for(i in 1:ni){
for(y in 1:ny){
if(a == 1) ages.error[1, , y, i] <- rdirichlet(1, c(0.85, 0.1, 0.05, rep(0, 7)))
if(a == 2) ages.error[2, , y, i] <- rdirichlet(1, c(0.1, 0.75, 0.1, 0.05, rep(0, 6)))
if(a == 3) ages.error[3, , y, i] <- rdirichlet(1, c(0.05, 0.1, 0.7, 0.1, 0.05, rep(0, 5)))
if(a == 4) ages.error[4, , y, i] <- rdirichlet(1, c(rep(0, 1), 0.05, 0.1, 0.7, 0.1, 0.05, rep(0, 4)))
if(a == 5) ages.error[5, , y, i] <- rdirichlet(1, c(rep(0, 2), 0.05, 0.1, 0.7, 0.1, 0.05, rep(0, 3)))
if(a == 6) ages.error[6, , y, i] <- rdirichlet(1, c(rep(0, 3), 0.05, 0.1, 0.7, 0.1, 0.05, rep(0, 2)))
if(a == 7) ages.error[7, , y, i] <- rdirichlet(1, c(rep(0, 4), 0.05, 0.1, 0.7, 0.1, 0.05, rep(0, 1)))
if(a == 8) ages.error[8, , y, i] <- rdirichlet(1, c(rep(0, 5), 0.05, 0.1, 0.7, 0.1 ,0.05))
if(a == 9) ages.error[9, , y, i] <- rdirichlet(1, c(rep(0, 6), 0.05, 0.1, 0.7, 0.1))
if(a == 10) ages.error[10, , y, i] <- rdirichlet(1, c(rep(0, 7), 0.05, 0.1, 0.85))
}
}
}
## set dataframes for uncertainty parameters
nmort.error <- fec.error <- land.wgt.error <- stk.nage.error <- stk.wgt.error <- disc.wgt.error <-
land.nage.error <- disc.nage.error <- flq
TAC.ovrsht <- flq[1, , , ]
dimnames(TAC.ovrsht)[[1]] <- 'all'
obs.ctrl.age$stk1$stkObs$TAC.ovrsht <- TAC.ovrsht
obs.ctrl.age$stk1$stkObs$TAC.ovrsht[] <- 10
obs.ctrl.age$stk1$stkObs$land.bio.error <- TAC.ovrsht
obs.ctrl.age$stk1$stkObs$land.bio.error[] <- 50
obs.ctrl.age$stk1$stkObs$disc.bio.error <- TAC.ovrsht
obs.ctrl.age$stk1$stkObs$disc.bio.error[] <- 10
obs.ctrl.age[['stk1']][['stkObs']][['ages.error']] <- ages.error
slts <- c('nmort.error', 'fec.error', 'land.wgt.error', 'stk.nage.error', 'stk.wgt.error', 'disc.wgt.error',
'land.nage.error', 'disc.nage.error')
for(sl in slts){
obs.ctrl.age[['stk1']][['stkObs']][[sl]] <- get(sl)
obs.ctrl.age[['stk1']][['stkObs']][[sl]][] <- rnorm(prod(dim(flq)), 1, .1)
}
## advice:
## TAC is set by historical catch for this example
data_tac <- fit$stock.prey %>% select(year, area, biomass_consumed) %>% rename(data = biomass_consumed)
data_tac$data[(proj.yr-first.yr+1):(last.yr-first.yr+1)] = NA
stk1_advice.TAC.flq <- iter(as.FLQuant(as.data.frame(data_tac)), it)
stk1_advice.TAC.flq <- window(stk1_advice.TAC.flq, first.yr, last.yr)
stk1_advice.quota.share.flq <- FLQuant(1,
dim = c(1, last.yr-first.yr+1, 1),
dimnames = list(year = first.yr:last.yr))
stk1_advice.avg.yrs <- c((proj.yr-3):(proj.yr-1))
## create advice object
stks.data <- list(stk1 = ls(pattern = "^stk1"))
advice <- create.advice.data(yrs, ns, ni, stks.data, fleets)
## advice.ctrl:
# hypothetical HCR and reference points for this example
HCR.models <- c('IcesHCR')
blim <- mean(stk1_ssb.flq)*0.15
btrigger <- mean(stk1_ssb.flq)*0.4
fmsy <- 0.10
ref.pts.stk1 <- matrix(rep(c(blim, btrigger, fmsy), 3), 3, ni, dimnames = list(c('Blim', 'Btrigger','Fmsy'), 1:ni))
advice.ctrl <- create.advice.ctrl(stksnames = stks,
HCR.models = HCR.models,
ref.pts.stk1 = ref.pts.stk1,
first.yr = first.yr,
last.yr = last.yr)
advice.ctrl[['stk1']][['sr']] <- list()
advice.ctrl[['stk1']][['sr']][['model']] <- 'geomean'
advice.ctrl$stk1$AdvCatch <- rep(TRUE, length(first.yr:last.yr)) #TRUE advice in catches, FALSE advice in landings
names(advice.ctrl$stk1$AdvCatch) <- as.character((first.yr:last.yr))
## assess.ctrl:
assess.models <- 'NoAssessment'
assess.ctrl <- create.assess.ctrl(stksnames = stks, assess.models = assess.models)
assess.ctrl[['stk1']]$work_w_Iter <- TRUE
assess.ctrl.sam <- assess.ctrl
assess.ctrl.sam[["stk1"]]$assess.model <- "sam2flbeia"
assess.ctrl.sam$stk1$assess.model <- "sam2flbeia"
assess.ctrl.sam[["stk1"]]$harvest.units <- "f"
assess.ctrl.sam[["stk1"]]$control$indices.type <- "number"
## check if the conditioning is ok
checkFLBEIAData( biols = biols,
SRs = SRs,
BDs = BDs,
fleets = fleets,
covars = covars,
indices = oneIndAge,
advice = advice,
main.ctrl = main.ctrl,
biols.ctrl = biols.ctrl,
fleets.ctrl = fleets.ctrl,
covars.ctrl = covars.ctrl,
obs.ctrl = obs.ctrl.age,
assess.ctrl = assess.ctrl.sam,
advice.ctrl = advice.ctrl)
## Save FLBEIA input objects
save(biols, SRs, BDs, oneGDGT, had.params, fleets, covars, oneIndAge, advice, main.ctrl, biols.ctrl, fleets.ctrl,
covars.ctrl, advice.ctrl, obs.ctrl.age, assess.ctrl.sam, file="input_flbeia-gadget_age_4s_sam.RData")
## Run FLBEIA
## age-structured assessment models
s0 <- FLBEIA(biols = biols,
SRs = SRs,
BDs = BDs,
GDGT = oneGDGT, # GADGET as OM
fleets = fleets,
covars = covars,
indices = oneIndAge,
advice = advice,
main.ctrl = main.ctrl,
biols.ctrl = biols.ctrl,
fleets.ctrl = fleets.ctrl,
covars.ctrl = covars.ctrl,
obs.ctrl = obs.ctrl.age,
assess.ctrl = assess.ctrl.sam,
advice.ctrl = advice.ctrl)
## reset the directory
setwd(dir)
## Results FLBEIA
names(s0)
plot(s0$biols[[1]])
plot(s0$stocks[[1]])
## plot for age-structured models
stk1.mp1 <- s0$stocks[['stk1']]
stk1.om1 <- FLBEIA:::perfectObs(s0$biols[['stk1']], s0$fleets, year = dim(s0$biols[['stk1']]@n)[2])
adf <- as.data.frame
s0_pop <- rbind( data.frame(population='obs', indicator='SSB', as.data.frame(ssb(stk1.mp1))),
data.frame(population='obs', indicator='Harvest', as.data.frame(fbar(stk1.mp1))),
data.frame(population='obs', indicator='Catch', as.data.frame(catch(stk1.mp1))),
data.frame(population='obs', indicator='Recruitment', as.data.frame(rec(stk1.mp1))),
data.frame(population='real', indicator='SSB', as.data.frame(ssb(stk1.om1))),
data.frame(population='real', indicator='Harvest', as.data.frame(fbar(stk1.om1))),
data.frame(population='real', indicator='Catch', as.data.frame(catch(stk1.om1))),
data.frame(population='real', indicator='Recruitment', as.data.frame(rec(stk1.om1))))
plot1 <- ggplot(data=s0_pop, aes(x=year, y=data, color=population)) +
geom_line() +
facet_grid(indicator ~ ., scales="free") +
geom_vline(xintercept = main.ctrl$sim.years[['initial']]-1, linetype = "longdash")+
theme_bw()+
theme(text=element_text(size=15),
title=element_text(size=15,face="bold"),
strip.text=element_text(size=15),
legend.position="top")+
ylab("")
print(plot1)