-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtraining.py
141 lines (118 loc) · 5.23 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import torch
import torch.nn as nn
import torch.utils
import torch.utils.data
import numpy as np
import time
def run_train(modelstate, loader_train, loader_valid, options, dataframe, path_general, file_name_general):
def validate(loader):
modelstate.model.eval()
total_vloss = 0
total_batches = 0
total_points = 0
with torch.no_grad():
for i, (u, y) in enumerate(loader):
u = u.to(options['device'])
y = y.to(options['device'])
vloss_ = modelstate.model(u, y)
total_batches += u.size()[0]
total_points += np.prod(u.shape)
total_vloss += vloss_.item()
return total_vloss / total_points # total_batches
def train(epoch):
# model in training mode
modelstate.model.train()
# initialization
total_loss = 0
total_batches = 0
total_points = 0
for i, (u, y) in enumerate(loader_train):
u = u.to(options['device'])
y = y.to(options['device'])
# set the optimizer
modelstate.optimizer.zero_grad()
# forward pass over model
loss_ = modelstate.model(u, y)
# NN optimization
loss_.backward()
modelstate.optimizer.step()
total_batches += u.size()[0]
total_points += np.prod(u.shape)
total_loss += loss_.item()
# output to console
if i % train_options.print_every == 0:
print(
'Train Epoch: [{:5d}/{:5d}], Batch [{:6d}/{:6d} ({:3.0f}%)]\tLearning rate: {:.2e}\tLoss: {:.3f}'.format(
epoch, train_options.n_epochs, (i + 1), len(loader_train),
100. * (i + 1) / len(loader_train), lr, total_loss / total_points)) # total_batches
return total_loss / total_points
try:
model_options = options['model_options']
train_options = options['train_options']
modelstate.model.train()
# Train
vloss = validate(loader_valid)
all_losses = []
all_vlosses = []
best_vloss = vloss
start_time = time.time()
# Extract initial learning rate
lr = train_options.init_lr
# output parameter
best_epoch = 0
for epoch in range(0, train_options.n_epochs + 1):
# Train and validate
train(epoch) # model, train_options, loader_train, optimizer, epoch, lr)
# validate every n epochs
if epoch % train_options.test_every == 0:
vloss = validate(loader_valid)
loss = validate(loader_train)
# Save losses
all_losses += [loss]
all_vlosses += [vloss]
if vloss < best_vloss: # epoch == train_options.n_epochs: #
best_vloss = vloss
# save model
path = path_general + 'model/'
file_name = file_name_general + '_bestModel.ckpt'
modelstate.save_model(epoch, vloss, time.clock() - start_time, path, file_name)
# torch.save(model.state_dict(), path + file_name)
best_epoch = epoch
# Print validation results
print('Train Epoch: [{:5d}/{:5d}], Batch [{:6d}/{:6d} ({:3.0f}%)]\tLearning rate: {:.2e}\tLoss: {:.3f}'
'\tVal Loss: {:.3f}'.format(epoch, train_options.n_epochs, len(loader_train), len(loader_train),
100., lr, loss, vloss))
# lr scheduler
if epoch >= train_options.lr_scheduler_nstart:
if len(all_vlosses) > train_options.lr_scheduler_nepochs and \
vloss >= max(all_vlosses[int(-train_options.lr_scheduler_nepochs - 1):-1]):
# reduce learning rate
lr = lr / train_options.lr_scheduler_factor
# adapt new learning rate in the optimizer
for param_group in modelstate.optimizer.param_groups:
param_group['lr'] = lr
print('\nLearning rate adapted! New learning rate {:.3e}\n'.format(lr))
# Early stoping condition
if lr < train_options.min_lr:
break
except KeyboardInterrupt:
print('\n')
print('-' * 89)
print('Exiting from training early')
# modelstate.save_model(epoch, vloss, time.clock() - start_time, logdir, 'interrupted_model.pt')
print('-' * 89)
# print best saved epoch model
# print('\nBest model from epoch {} saved.'.format(best_epoch))
# print time of learning
time_el = time.time() - start_time
# print('\nTotal learning time: {:2.0f}:{:2.0f} [min:sec]'.format(time_el // 60, time_el - 60 * (time_el // 60)))
# save data in dictionary
train_dict = {'all_losses': all_losses,
'all_vlosses': all_vlosses,
'best_epoch': best_epoch,
'total_epoch': epoch,
'train_time': time_el}
# overall options
dataframe.update(train_dict)
return dataframe