-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpred_1DCNN.py
43 lines (28 loc) · 984 Bytes
/
pred_1DCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, BatchNormalization, Activation
from keras.optimizers import RMSprop
from keras.layers import Embedding
import numpy as np
import sys
import scipy.io as sio
import my_kerasloader as kl
from sklearn.metrics import accuracy_score
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
filemat = '___tmp.mat';
filemat2 = '___tmp2.mat';
model_name = sys.argv[1];
fp = sio.loadmat(filemat);
x_test = fp['x_test'];
x_test = x_test.reshape((x_test.shape[0],x_test.shape[1],1))
#N = x_test.shape[1];
model = kl.load_keras_model(model_name+'.json', model_name+'.h5');
#model.summary();
y_test_cat = model.predict(x_test); #batch_size=128
#y_test = y_test_cat;
y_test = np.argmax(y_test_cat,axis=1)+1
sio.savemat(filemat2, {"y_test": y_test,"y_test_cat": y_test_cat,});
#score = model.evaluate(x_test, y_test, verbose=0)